Whitney G. Colella
Pacific Northwest National Laboratory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Whitney G. Colella.
Archive | 2012
Michael Cw Kintner-Meyer; Patrick J. Balducci; Whitney G. Colella; Marcelo A. Elizondo; Chunlian Jin; Tony B. Nguyen; Vilayanur V. Viswanathan; Yu Zhang
To examine the role that energy storage could play in mitigating the impacts of the stochastic variability of wind generation on regional grid operation, the Pacific Northwest National Laboratory (PNNL) examined a hypothetical 2020 grid scenario in which additional wind generation capacity is built to meet renewable portfolio standard targets in the Western Interconnection. PNNL developed a stochastic model for estimating the balancing requirements using historical wind statistics and forecasting error, a detailed engineering model to analyze the dispatch of energy storage and fast-ramping generation devices for estimating size requirements of energy storage and generation systems for meeting new balancing requirements, and financial models for estimating the life-cycle cost of storage and generation systems in addressing the future balancing requirements for sub-regions in the Western Interconnection. Evaluated technologies include combustion turbines, sodium sulfur (Na-S) batteries, lithium ion batteries, pumped-hydro energy storage, compressed air energy storage, flywheels, redox flow batteries, and demand response. Distinct power and energy capacity requirements were estimated for each technology option, and battery size was optimized to minimize costs. Modeling results indicate that in a future power grid with high-penetration of renewables, the most cost competitive technologies for meeting balancing requirements include Na-S batteries and flywheels.
Archive | 2013
Brian D. James; Whitney G. Colella; Jennie M. Moton; Genevieve Saur; Todd Ramsden
This report documents the development of four DOE Hydrogen Analysis (H2A) case studies for polymer electrolyte membrane (PEM) electrolysis. The four cases characterize PEM electrolyzer technology for two hydrogen production plant sizes (Forecourt and Central) and for two technology development time horizons (Current and Future).
Journal of Manufacturing Science and Engineering-transactions of The Asme | 2014
Brian D. James; Andrew B. Spisak; Whitney G. Colella
This article presents a design for manufacturing and assembly (DFMA) methodology for estimating the capital costs of new, emerging energy technologies built at varying rates of mass-production. The methodology consists of four major steps: (1) System Conceptual Design, (2) System Physical Design, (3) Cost Modeling, and (4) Continuous Improvement to Reduce Cost. The article describes the application of this methodology to a specific case study of automotive fuel cell systems (FCSs). Because any alternative automotive technology must compete with the very mature and widespread gasoline internal combustion engine, it is vitally important to identify the performance, design, and manufacturing conditions needed to reduce automotive FCS costs. Thus, a DFMA-style analysis is applied to the cost to manufacture a polymer electrolyte membrane (PEM) FCS for cars, at varying rates of production (between 1,000 and 500,000 vehicles per year). The results of this kind of DFMA-style analysis can be used to elucidate key cost drivers at varying levels of production for new energy technologies.
Journal of Fuel Cell Science and Technology | 2015
Heather Dillon; Whitney G. Colella
Pacific Northwest National Laboratory (PNNL) is working with industry to independently monitor up to 15 distinct 5 kW-electric (kWe) combined heat and power (CHP) high temperature (HT) proton exchange membrane (PEM) fuel cell systems (FCSs) installed in light commercial buildings. This research paper discusses an evaluation of the first six months of measured performance data acquired at a 1 s sampling rate from real-time monitoring equipment attached to the FCSs at building sites. Engineering performance parameters are independently evaluated. Based on an analysis of the first few months of measured operating data, FCS performance is consistent with manufacturer-stated performance. Initial data indicate that the FCSs have relatively stable performance and a long-term average production of about 4.57 kWe of power. This value is consistent with, but slightly below, the manufacturers stated rated electric power output of 5 kWe. The measured system net electric efficiency has averaged 33.7%, based on the higher heating value (HHV) of natural gas fuel. This value, also, is consistent with, but slightly below, the manufacturers stated rated electric efficiency of 36%. The FCSs provide low-grade hot water to the building at a measured average temperature of about 48.4 °C, lower than the manufacturers stated maximum hot water delivery temperature of 65 °C. The uptime of the systems is also evaluated. System availability can be defined as the quotient of total operating time compared to time since commissioning. The average values for system availability vary between 96.1 and 97.3%, depending on the FCS evaluated in the field. Performance at rated value for electrical efficiency (PRVeff) can be defined as the quotient of the system time operating at or above the rated electric efficiency and the time since commissioning. The PRVeff varies between 5.6% and 31.6%, depending on the FCS field unit evaluated. Performance at rated value for electrical power (PRVp) can be defined as the quotient of the system time operating at or above the rated electric power and the time since commissioning. PRVp varies between 6.5% and 16.2%. Performance at rated value for electrical efficiency and power (PRVt) can be defined as the quotient of the system time operating at or above both the rated electric efficiency and the electric power output compared to the time since commissioning. PRVt varies between 0.2% and 1.4%. Optimization to determine the manufacturer rating required to achieve PRVt greater than 80% has been performed based on the collected data. For example, for FCS Unit 130 to achieve a PRVt of 95%, it would have to be down-rated to an electrical power output of 3.2 kWe and an electrical efficiency of 29%. The use of PRV as an assessment metric for FCSs has been developed and reported for the first time in this paper. For FCS Unit 130, a maximum decline in electric power output of approximately 18% was observed over a 500 h period in Jan. 2012.
international conference on fuel cell science engineering and technology fuelcell collocated with asme international conference on energy sustainability | 2012
Heather Dillon; Whitney G. Colella
Pacific Northwest National Laboratory (PNNL) is working with industry to independently monitor up to fifteen distinct 5 kilowatt-electric (kWe) combined heat and power (CHP) high temperature (HT) proton exchange membrane (PEM) fuel cell systems (FCSs) installed in light commercial buildings. This research paper discusses an evaluation of the first six months of measured performance data acquired at a one-second sampling rate from real-time monitoring equipment attached to the FCSs at building sites. Engineering performance parameters are independently evaluated.Based on an analysis of the first few months of measured operating data, FCS performance is consistent with manufacturer-stated performance. Initial data indicate that the FCSs have relatively stable performance and a long term average production of about 4.57 kWe of power. This value is consistent with, but slightly below, the manufacturer’s stated rated electric power output of 5 kWe. The measured system net electric efficiency has averaged 33.7%, based on the higher heating value (HHV) of natural gas fuel. This value, also, is consistent with, but slightly below, the manufacturer’s stated rated electric efficiency of 36%. The FCSs provide low-grade hot water to the building at a measured average temperature of about 48.4°C, lower than the manufacturer’s stated maximum hot water delivery temperature of 65°C.The uptime of the systems is also evaluated. System availability can be defined as the quotient of total operating time compared to time since commissioning. The average values for system availability vary between 96.1 and 97.3%, depending on the FCS evaluated in the field. Performance at Rated Value for electrical efficiency (PRVeff) can be defined as the quotient of the system time operating at or above the rated electric efficiency and the time since commissioning. The PRVeff varies between 5.6% and 31.6%, depending on the FCS field unit evaluated. Performance at Rated Value for electrical power (PRVp) can be defined as the quotient of the system time operating at or above the rated electric power and the time since commissioning. PRVp varies between 6.5% and 16.2%. Performance at Rated Value for electrical efficiency and power (PRVt) can be defined as the quotient of the system time operating at or above both the rated electric efficiency and the electric power output compared to the time since commissioning. PRVt varies between 0.2% and 1.4%. Optimization to determine the manufacturer rating required to achieve PRVt greater than 80% has been performed based on the collected data. For example, for FCS unit 130 to achieve a PRVt of 95%, it would have to be down-rated to an electrical power output of 3.2 kWe and an electrical efficiency of 29%.The use of PRV as an assessment metric for FCSs has been developed and reported for the first time in this paper.For FCS Unit 130, a 20% decline in electric power output was observed from approximately 5 kWe to 4 kWe over a 1,500 hour period between Dec. 14th 2011 and Feb. 14th 2012.Copyright
international conference on fuel cell science engineering and technology fuelcell collocated with asme international conference on energy sustainability | 2012
Whitney G. Colella; Siva Prasad Pilli
The United States (U.S.) Department of Energy (DOE)’s Pacific Northwest National Laboratory (PNNL) is spearheading a program with industry to deploy and independently monitor five kilowatt-electric (kWe) combined heat and power (CHP) fuel cell systems (FCSs) in light commercial buildings. This publication discusses results from PNNL’s research efforts to independently evaluate manufacturer-stated engineering, economic, and environmental performance of these CHP FCSs at installation sites. The analysis was done by developing parameters for economic comparison of CHP installations. Key thermodynamic terms are first defined, followed by an economic analysis using both a standard accounting approach and a management accounting approach. Key economic and environmental performance parameters are evaluated, including (1) the average per unit cost of the CHP FCSs per unit of power, (2) the average per unit cost of the CHP FCSs per unit of energy, (3) the change in greenhouse gas (GHG) and air pollution emissions with a switch from conventional power plants and furnaces to CHP FCSs; (4) the change in GHG mitigation costs from the switch; and (5) the change in human health costs related to air pollution.CHP FCS heat utilization is expected to be less than 100% at several installation sites. Specifically at six of the installation sites, during periods of minimum building heat demand (i.e. summer season), the average in-use CHP FCS heat recovery efficiency based on the higher heating value of natural gas is expected to be only 24.4%.From the power perspective, the average per unit cost of electrical power is estimated to span a range from
international conference on fuel cell science engineering and technology fuelcell collocated with asme international conference on energy sustainability | 2012
Michael Cw Kintner-Meyer; Tony B. Nguyen; Chunlian Jin; Patrick J. Balducci; Marcelo A. Elizondo; Vilayanur V. Viswanathan; Yu Zhang; Whitney G. Colella
15–19,000/kilowatt-electric (kWe) (depending on site-specific changes in installation, fuel, and other costs), while the average per unit cost of electrical and heat recovery power varies between
Archive | 2013
Brian D. James; Jennie M. Moton; Whitney G. Colella
7,000 and
Journal of Fuel Cell Science and Technology | 2015
Whitney G. Colella; Siva Prasad Pilli
9,000/kW. From the energy perspective, the average per unit cost of electrical energy ranges from
Journal of Fuel Cell Science and Technology | 2011
Whitney G. Colella; Stephen H. Schneider; Daniel M. Kammen; Aditya Jhunjhunwala; Nigel Teo
0.38 to