Wilfrid Carré
Institut national de la recherche agronomique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Wilfrid Carré.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Jonas Collén; Betina M. Porcel; Wilfrid Carré; Steven G. Ball; Cristian Chaparro; Thierry Tonon; Tristan Barbeyron; Gurvan Michel; Benjamin Noel; Klaus Valentin; Marek Eliáš; François Artiguenave; Alok Arun; Jean-Marc Aury; Jose Fernandes Barbosa-Neto; John H. Bothwell; François-Yves Bouget; Loraine Brillet; Francisco Cabello-Hurtado; Salvador Capella-Gutiérrez; Bénédicte Charrier; Lionel Cladière; J. Mark Cock; Susana M. Coelho; Christophe Colleoni; Mirjam Czjzek; Corinne Da Silva; Ludovic Delage; Philippe Deschamps; Simon M. Dittami
Red seaweeds are key components of coastal ecosystems and are economically important as food and as a source of gelling agents, but their genes and genomes have received little attention. Here we report the sequencing of the 105-Mbp genome of the florideophyte Chondrus crispus (Irish moss) and the annotation of the 9,606 genes. The genome features an unusual structure characterized by gene-dense regions surrounded by repeat-rich regions dominated by transposable elements. Despite its fairly large size, this genome shows features typical of compact genomes, e.g., on average only 0.3 introns per gene, short introns, low median distance between genes, small gene families, and no indication of large-scale genome duplication. The genome also gives insights into the metabolism of marine red algae and adaptations to the marine environment, including genes related to halogen metabolism, oxylipins, and multicellularity (microRNA processing and transcription factors). Particularly interesting are features related to carbohydrate metabolism, which include a minimalistic gene set for starch biosynthesis, the presence of cellulose synthases acquired before the primary endosymbiosis showing the polyphyly of cellulose synthesis in Archaeplastida, and cellulases absent in terrestrial plants as well as the occurrence of a mannosylglycerate synthase potentially originating from a marine bacterium. To explain the observations on genome structure and gene content, we propose an evolutionary scenario involving an ancestral red alga that was driven by early ecological forces to lose genes, introns, and intergenetic DNA; this loss was followed by an expansion of genome size as a consequence of activity of transposable elements.
PLOS ONE | 2013
Jan Janouškovec; Shao-Lun Liu; Patrick T. Martone; Wilfrid Carré; Catherine Leblanc; Jonas Collén; Patrick J. Keeling
Red algae have the most gene-rich plastid genomes known, but despite their evolutionary importance these genomes remain poorly sampled. Here we characterize three complete and one partial plastid genome from a diverse range of florideophytes. By unifying annotations across all available red algal plastid genomes we show they all share a highly compact and slowly-evolving architecture and uniquely rich gene complements. Both chromosome structure and gene content have changed very little during red algal diversification, and suggest that plastid-to nucleus gene transfers have been rare. Despite their ancient character, however, the red algal plastids also contain several unprecedented features, including a group II intron in a tRNA-Met gene that encodes the first example of red algal plastid intron maturase – a feature uniquely shared among florideophytes. We also identify a rare case of a horizontally-acquired proteobacterial operon, and propose this operon may have been recruited for plastid function and potentially replaced a nucleus-encoded plastid-targeted paralogue. Plastid genome phylogenies yield a fully resolved tree and suggest that plastid DNA is a useful tool for resolving red algal relationships. Lastly, we estimate the evolutionary rates among more than 200 plastid genes, and assess their usefulness for species and subspecies taxonomy by comparison to well-established barcoding markers such as cox1 and rbcL. Overall, these data demonstrates that red algal plastid genomes are easily obtainable using high-throughput sequencing of total genomic DNA, interesting from evolutionary perspectives, and promising in resolving red algal relationships at evolutionarily-deep and species/subspecies levels.
Gut | 2014
Catherine Juste; David P. Kreil; Christian Beauvallet; Alain Guillot; Sebastian Vaca; Christine Carapito; Stanislas Mondot; Peter Sykacek; Harry Sokol; Florence Blon; Pascale Lepercq; Florence Levenez; Benoît Valot; Wilfrid Carré; Valentin Loux; Nicolas Pons; Olivier David; Brigitte Schaeffer; Patricia Lepage; Patrice Martin; Véronique Monnet; Philippe Seksik; Laurent Beaugerie; S. Dusko Ehrlich; Jean-François Gibrat; Alain Van Dorsselaer; Joël Doré
Objective No Crohn’s disease (CD) molecular maker has advanced to clinical use, and independent lines of evidence support a central role of the gut microbial community in CD. Here we explore the feasibility of extracting bacterial protein signals relevant to CD, by interrogating myriads of intestinal bacterial proteomes from a small number of patients and healthy controls. Design We first developed and validated a workflow—including extraction of microbial communities, two-dimensional difference gel electrophoresis (2D-DIGE), and LC-MS/MS—to discover protein signals from CD-associated gut microbial communities. Then we used selected reaction monitoring (SRM) to confirm a set of candidates. In parallel, we used 16S rRNA gene sequencing for an integrated analysis of gut ecosystem structure and functions. Results Our 2D-DIGE-based discovery approach revealed an imbalance of intestinal bacterial functions in CD. Many proteins, largely derived from Bacteroides species, were over-represented, while under-represented proteins were mostly from Firmicutes and some Prevotella members. Most overabundant proteins could be confirmed using SRM. They correspond to functions allowing opportunistic pathogens to colonise the mucus layers, breach the host barriers and invade the mucosae, which could still be aggravated by decreased host-derived pancreatic zymogen granule membrane protein GP2 in CD patients. Moreover, although the abundance of most protein groups reflected that of related bacterial populations, we found a specific independent regulation of bacteria-derived cell envelope proteins. Conclusions This study provides the first evidence that quantifiable bacterial protein signals are associated with CD, which can have a profound impact on future molecular diagnosis.
Human Mutation | 2016
Christèle Dubourg; Wilfrid Carré; Houda Hamdi-Rozé; Charlotte Mouden; Joëlle Roume; Benmansour Abdelmajid; Daniel Amram; Clarisse Baumann; Nicolas Chassaing; Christine Coubes; Laurence Faivre-Olivier; Emmanuelle Ginglinger; Marie Gonzales; Annie Levy-Mozziconacci; Sally-Ann Lynch; Sophie Naudion; Laurent Pasquier; Amélie Poidvin; Fabienne Prieur; Pierre Sarda; Annick Toutain; Valérie Dupé; Linda Akloul; Sylvie Odent; Marie de Tayrac; Véronique David
Holoprosencephaly (HPE) is the most common congenital cerebral malformation in humans, characterized by impaired forebrain cleavage and midline facial anomalies. It presents a high heterogeneity, both in clinics and genetics. We have developed a novel targeted next‐generation sequencing (NGS) assay and screened a cohort of 257 HPE patients. Mutations with high confidence in their deleterious effect were identified in approximately 24% of the cases and were held for diagnosis, whereas variants of uncertain significance were identified in 10% of cases. This study provides a new classification of genes that are involved in HPE. SHH, ZIC2, and SIX3 remain the top genes in term of frequency with GLI2, and are followed by FGF8 and FGFR1. The three minor HPE genes identified by our study are DLL1, DISP1, and SUFU. Here, we demonstrate that fibroblast growth factor signaling must now be considered a major pathway involved in HPE. Interestingly, several cases of double mutations were found and argue for a polygenic inheritance of HPE. Altogether, it supports that the implementation of NGS in HPE diagnosis is required to improve genetic counseling.
PLOS ONE | 2016
Tristan Barbeyron; Loraine Brillet-Guéguen; Wilfrid Carré; Cathelène Carrière; Christophe Caron; Mirjam Czjzek; Mark Hoebeke; Gurvan Michel
Sulfatases cleave sulfate groups from various molecules and constitute a biologically and industrially important group of enzymes. However, the number of sulfatases whose substrate has been characterized is limited in comparison to the huge diversity of sulfated compounds, yielding functional annotations of sulfatases particularly prone to flaws and misinterpretations. In the context of the explosion of genomic data, a classification system allowing a better prediction of substrate specificity and for setting the limit of functional annotations is urgently needed for sulfatases. Here, after an overview on the diversity of sulfated compounds and on the known sulfatases, we propose a classification database, SulfAtlas (http://abims.sb-roscoff.fr/sulfatlas/), based on sequence homology and composed of four families of sulfatases. The formylglycine-dependent sulfatases, which constitute the largest family, are also divided by phylogenetic approach into 73 subfamilies, each subfamily corresponding to either a known specificity or to an uncharacterized substrate. SulfAtlas summarizes information about the different families of sulfatases. Within a family a web page displays the list of its subfamilies (when they exist) and the list of EC numbers. The family or subfamily page shows some descriptors and a table with all the UniProt accession numbers linked to the databases UniProt, ExplorEnz, and PDB.
Nucleic Acids Research | 2015
James E. Tarver; Alexandre Cormier; Natalia Pinzón; Richard S. Taylor; Wilfrid Carré; Martina Strittmatter; Hervé Seitz; Susana M. Coelho; J. Mark Cock
There is currently convincing evidence that microRNAs have evolved independently in at least six different eukaryotic lineages: animals, land plants, chlorophyte green algae, demosponges, slime molds and brown algae. MicroRNAs from different lineages are not homologous but some structural features are strongly conserved across the eukaryotic tree allowing the application of stringent criteria to identify novel microRNA loci. A large set of 63 microRNA families was identified in the brown alga Ectocarpus based on mapping of RNA-seq data and nine microRNAs were confirmed by northern blotting. The Ectocarpus microRNAs are highly diverse at the sequence level with few multi-gene families, and do not tend to occur in clusters but exhibit some highly conserved structural features such as the presence of a uracil at the first residue. No homologues of Ectocarpus microRNAs were found in other stramenopile genomes indicating that they emerged late in stramenopile evolution and are perhaps specific to the brown algae. The large number of microRNA loci in Ectocarpus is consistent with the developmental complexity of many brown algal species and supports a proposed link between the emergence and expansion of microRNA regulatory systems and the evolution of complex multicellularity.
Clinical Genetics | 2016
Charlotte Mouden; Christèle Dubourg; Wilfrid Carré; S. Rose; Chloé Quélin; Linda Akloul; Houda Hamdi-Rozé; G. Viot; H. Salhi; P. Darnault; Sylvie Odent; Valérie Dupé; Véronique David
Holoprosencephaly (HPE) is the most common congenital cerebral malformation, characterized by impaired forebrain cleavage and midline facial anomalies. Heterozygous mutations in 14 genes have been associated with HPE and are often inherited from an unaffected parent, underlying complex genetic bases. It is now emerging that HPE may result from a combination of multiple genetic events, rather than from a single heterozygous mutation. To explore this hypothesis, we undertook whole exome sequencing and targeted high‐throughput sequencing approaches to identify mutations in HPE subjects. Here, we report two HPE families in which two mutations are implicated in the disease. In the first family presenting two foetuses with alobar and semi‐lobar HPE, we found mutations in two genes involved in HPE, SHH and DISP1, inherited respectively from the father and the mother. The second reported case is a family with a 9‐year‐old girl presenting lobar HPE, harbouring two compound heterozygous mutations in DISP1. Together, these cases of digenic inheritance and autosomal recessive HPE suggest that in some families, several genetic events are necessary to cause HPE. This study highlights the complexity of HPE inheritance and has to be taken into account by clinicians to improve HPE genetic counselling.
PLOS ONE | 2015
Charlotte Mouden; Marie de Tayrac; Christèle Dubourg; Sophie Rose; Wilfrid Carré; Houda Hamdi-Rozé; Marie-Claude Babron; Linda Akloul; Bénédicte Héron-Longe; Sylvie Odent; Valérie Dupé; Régis Giet; Véronique David
Holoprosencephaly (HPE) is a frequent congenital malformation of the brain characterized by impaired forebrain cleavage and midline facial anomalies. Heterozygous mutations in 14 genes have been identified in HPE patients that account for only 30% of HPE cases, suggesting the existence of other HPE genes. Data from homozygosity mapping and whole-exome sequencing in a consanguineous Turkish family were combined to identify a homozygous missense mutation (c.2150G>A; p.Gly717Glu) in STIL, common to the two affected children. STIL has a role in centriole formation and has previously been described in rare cases of microcephaly. Rescue experiments in U2OS cells showed that the STIL p.Gly717Glu mutation was not able to fully restore the centriole duplication failure following depletion of endogenous STIL protein indicating the deleterious role of the mutation. In situ hybridization experiments using chick embryos demonstrated that expression of Stil was in accordance with a function during early patterning of the forebrain. It is only the second time that a STIL homozygous mutation causing a recessive form of HPE was reported. This result also supports the genetic heterogeneity of HPE and increases the panel of genes to be tested for HPE diagnosis.
Clinical Genetics | 2018
E. Chérot; Boris Keren; Christèle Dubourg; Wilfrid Carré; M. Fradin; A. Lavillaureix; Alexandra Afenjar; Lydie Burglen; Sandra Whalen; Perrine Charles; I. Marey; S. Heide; Aurélia Jacquette; Delphine Héron; D. Doummar; Diana Rodriguez; T. Billette de Villemeur; M.-L. Moutard; A. Guët; J. Xavier; D. Périsse; D. Cohen; F. Demurger; Chloé Quélin; Christel Depienne; Sylvie Odent; Caroline Nava; Véronique David; L. Pasquier; Cyril Mignot
Although whole‐exome sequencing (WES) is the gold standard for the diagnosis of neurodevelopmental disorders (NDDs), it remains expensive for some genetic centers. Commercialized panels comprising all OMIM‐referenced genes called “medical exome” (ME) constitute an alternative strategy to WES, but its efficiency is poorly known. In this study, we report the experience of 2 clinical genetic centers using ME for diagnosis of NDDs. We recruited 216 consecutive index patients with NDDs in 2 French genetic centers, corresponded to the daily practice of the units and included non‐syndromic intellectual disability (NSID, n = 33), syndromic ID (NSID = 122), pediatric neurodegenerative disorders (n = 7) and autism spectrum disorder (ASD, n = 54). We sequenced samples from probands and their parents (when available) with the Illumina TruSight One sequencing kit. We found pathogenic or likely pathogenic variants in 56 index patients, for a global diagnostic yield of 25.9%. The diagnosis yield was higher in patients with ID as the main diagnosis (32%) than in patients with ASD (3.7%). Our results suggest that the use of ME is a valuable strategy for patients with ID when WES cannot be used as a routine diagnosis tool.
bioRxiv | 2018
Artem Kim; Clara Savary; Christèle Dubourg; Wilfrid Carré; Charlotte Mouden; Houda Hamdi-Rozé; Helene Guyodo; Jerome Le Douce; Laurent Pasquier; Elisabeth Flori; Marie Gonzales; Claire Beneteau; Odile Boute; Tania Attié-Bitach; Joëlle Roume; Louise Goujon; Linda Akloul; Erwan Watrin; Valérie Dupé; Sylvie Odent; Marie de Tayrac; Véronique David
Purpose Holoprosencephaly (HPE) is a pathology of forebrain development characterized by high phenotypic and locus heterogeneity. Seventeen genes are known so far in HPE but the understanding of its genetic architecture remains to be refined. Here, we investigated the oligogenic nature of HPE resulting from accumulation of variants in different relevant genes. Methods Exome data from 29 patients diagnosed with HPE and 51 relatives from 26 unrelated families were analyzed. Standard variant classification approach was improved with a gene prioritization strategy based on clinical ontologies and gene co-expression networks. Clinical phenotyping and exploration of cross-species similarities were further performed on a family-by-family basis. Results We identified 232 rare deleterious variants in HPE patients representing 180 genes significantly associated with key pathways of forebrain development including Sonic Hedgehog (SHH) and Primary Cilia. Oligogenic events were observed in 10 families and involved novel HPE genes including recurrently mutated genes (FAT1, NDST1, COL2A1 and SCUBE2) and genes implicated in cilia function. Conclusions This study reports novel HPE-relevant genes and reveals the existence of oligogenic cases resulting from several mutations in SHH-related genes. It also underlines that integrating clinical phenotyping in genetic studies will improve the identification of causal variants in rare disorders.