Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wilhelmus Drinkenburg is active.

Publication


Featured researches published by Wilhelmus Drinkenburg.


Biological Psychology | 2010

Disorder specificity despite comorbidity: Resting EEG alpha asymmetry in major depressive disorder and post-traumatic stress disorder

Andrew H. Kemp; Kristi R. Griffiths; Kim L. Felmingham; Stewart A. Shankman; Wilhelmus Drinkenburg; Martijn Arns; Clark Cr; Richard A. Bryant

The approach-withdrawal and valence-arousal models highlight that specific brain laterality profiles may distinguish depression and anxiety. However, studies remain to be conducted in multiple clinical populations that directly test the diagnostic specificity of these hypotheses. The current study compared electroencephalographic data under resting state, eyes closed conditions in patients with major depressive disorder (MDD) (N=15) and post-traumatic stress disorder (PTSD) (N=14) relative to healthy controls (N=15) to examine the specificity of brain laterality in these disorders. Key findings included (1) reduced left-frontal activity in MDD, (2) a positive correlation between PTSD severity and right-frontal lateralisation, (3) greater activity in PTSD patients relative to MDD within the right-parietotemporal region, and (4) globally increased alpha power in MDD. Findings partially support the diagnostic applicability of the theoretical frameworks. Future studies may benefit from examining task-driven differences between groups.


Brain Stimulation | 2012

Neurophysiological predictors of non-response to rTMS in depression.

Martijn Arns; Wilhelmus Drinkenburg; Paul B. Fitzgerald; J. Leon Kenemans

BACKGROUND The application of rTMS in Depression has been very well investigated over the last few years. However, little is known about predictors of non-response associated with rTMS treatment. OBJECTIVE This study examined neurophysiological parameters (EEG and ERP) in 90 depressed patients treated with rTMS and psychotherapy and sought to identify predictors of non-response. METHODS This study is a multi-site open-label study assessing pre-treatment EEG and ERP measures associated with non-response to rTMS treatment. RESULTS Non-responders were characterized by 1) Increased fronto-central theta EEG power, 2) a slower anterior individual alpha peak frequency, 3) a larger P300 amplitude, and 4) decreased pre-frontal delta and beta cordance. A discriminant analysis yielded a significant model, and subsequent ROC curve demonstrated an area under the curve of 0.814. CONCLUSIONS Several EEG variables demonstrated clear differences between R and NR such as the anterior iAPF, fronto-central Theta and pre-frontal cordance in the Delta and Beta band (representative of increased relative pre-frontal perfusion). The increased P300 amplitude as a predictor for non-response requires further study, since this was the opposite as hypothesized and there were no correlations of this measure with clinical improvement for the whole sample. Combining these biomarkers in a discriminant analysis resulted in a reliable identification of non-responders with low false positive rates. Future studies should prospectively replicate these findings and also further investigate appropriate treatments for the sub-groups of non-responders identified in this study, given that most of these biomarkers have also been found in antidepressant medication studies.


Applied Psychophysiology and Biofeedback | 2012

The Effects of QEEG-Informed Neurofeedback in ADHD: An Open-Label Pilot Study

Martijn Arns; Wilhelmus Drinkenburg; J. Leon Kenemans

In ADHD several EEG biomarkers have been described before, with relevance to treatment outcome to stimulant medication. This pilot-study aimed at personalizing neurofeedback treatment to these specific sub-groups to investigate if such an approach leads to improved clinical outcomes. Furthermore, pre- and post-treatment EEG and ERP changes were investigated in a sub-group to study the neurophysiological effects of neurofeedback. Twenty-one patients with ADHD were treated with QEEG-informed neurofeedback and post-treatment effects on inattention (ATT), hyperactivity/impulsivity (HI) and comorbid depressive symptoms were investigated. There was a significant improvement for both ATT, HI and comorbid depressive complaints after QEEG-informed neurofeedback. The effect size for ATT was 1.78 and for HI was 1.22. Furthermore, anterior individual alpha peak frequency (iAPF) demonstrated a strong relation to improvement on comorbid depressive complaints. Pre- and post-treatment effects for the SMR neurofeedback sub-group exhibited increased N200 and P300 amplitudes and decreased SMR EEG power post-treatment. This pilot study is the first study demonstrating that it is possible to select neurofeedback protocols based on individual EEG biomarkers and suggests this results in improved treatment outcome specifically for ATT, however these results should be replicated in further controlled studies. A slow anterior iAPF at baseline predicts poor treatment response on comorbid depressive complaints in line with studies in depression. The effects of SMR neurofeedback resulted in specific ERP and EEG changes.


European Journal of Pharmacology | 2009

Modulation of group II metabotropic glutamate receptor (mGlu2) elicits common changes in rat and mice sleep-wake architecture.

Abdellah Ahnaou; Frank M. Dautzenberg; Helena Geys; Hassan Julien Imogai; Antoine Gibelin; Dieder Moechars; Thomas Steckler; Wilhelmus Drinkenburg

Compiling pharmacological evidence implicates metabotropic glutamate mGlu(2) receptors in the regulation of emotional states and suggests positive modulators as a novel therapeutic approach of Anxiety/Depression and Schizophrenia. Here, we investigated subcutaneous effects of the metabotropic glutamate mGlu(2/3) agonist (LY354740) on sleep-wake architecture in rat. To confirm the specific effects on rapid eye movement (REM) sleep were mediated via metabotropic glutamate mGlu(2) receptors, we characterized the sleep-wake cycles in metabotropic glutamate mGlu(2) receptor deficient mice (mGlu(2)R(-/-)) and their arousal response to LY354740. We furthermore examined effects on sleep behavior in rats of the positive allosteric modulator, biphenyl-indanone A (BINA) alone and in combination with LY354740 at sub-effective doses. LY354740 (1, 3 and 10 mg/kg) dose-dependently suppressed REM sleep and prolonged its onset latency. Metabotropic glutamate mGlu(2)R(-/-) and their wild type (WT) littermates exhibited similar spontaneous sleep-wake phenotype, while LY354740 (10 mg/kg) significantly affected REM sleep variables in WT but not in the mutant. In rats, BINA (1, 3, 10, 20, 40 mg/kg) dose-dependently suppressed REM sleep, lengthened its onset latency and slightly enhanced passive waking. Additionally, combined treatment elicited a synergistic action on REM sleep variables. Our findings show common changes of REM sleep variables following modulation of metabotropic glutamate mGlu(2) receptor and support an active role of this receptor in the regulation of REM sleep. The synergistic action of BINA on LY354740s effects on sleep pattern implies that positive modulators would tune the endogenous glutamate tone suggesting potential benefit in the treatment of psychiatric disorders, in which REM sleep overdrive is manifested.


Neuropharmacology | 2004

Effects of diazepam and zolpidem on EEG beta frequencies are behavior-specific in rats.

Hester van Lier; Wilhelmus Drinkenburg; Yvonne J.W van Eeten; Anton Coenen

A pharmacological dissociation of the relation between electroencephalographic (EEG) activity and behavior has been described for the benzodiazepines. While a decrease in high frequency EEG activity is associated with a decrease in arousal in drug-free conditions, sedative benzodiazepines increase beta activity. Non-benzodiazepine GABA(A) receptor modulators can increase beta activity as well. To further study the relationship between rat behavior and EEG under GABA(A) receptor modulation, EEG effects of diazepam (2.5 mg/kg) and zolpidem (2.5 mg/kg) were studied during different behaviors. Both drugs modulate the GABA(A) receptor, albeit that zolpidem shows alpha(1) subunit selectivity while diazepam is non-selective. A detailed analysis of rat open field behavior was made with a distinction of 25 behavioral elements. The EEG was segmented according to each behavioral element and a corresponding power spectrum calculated. Both diazepam and zolpidem increased EEG beta frequencies, characteristic for the benzodiazepines. However, the beta and gamma increase was specific for active behavior and not for inactivity. Interestingly, diazepam and zolpidem seemed to amplify, rather than dissociate, the relation between behavior and the EEG. It is hypothesized that the large increase in beta-3/gamma activity caused by diazepam and zolpidem is a compensatory mechanism that allows for behavioral activation, despite pharmacologically induced sedation.


Journal of Medicinal Chemistry | 2012

Discovery of 3-cyclopropylmethyl-7-(4-phenylpiperidin-1-yl)-8-trifluoromethyl[1,2,4]triazolo[4,3-a]pyridine (JNJ-42153605): a positive allosteric modulator of the metabotropic glutamate 2 receptor.

José M. Cid; Gary Tresadern; Juan Antonio Vega; Ana Isabel de Lucas; Encarnación Matesanz; Laura Iturrino; María Lourdes Linares; Aránzazu García; José Ignacio Andrés; Gregor James Macdonald; Daniel Oehlrich; Hilde Lavreysen; Anton Megens; Abdellah Ahnaou; Wilhelmus Drinkenburg; Claire Mackie; Stefan Pype; David Gallacher; Andrés A. Trabanco

Advanced leads from a series of 1,2,4-triazolo[4,3-a]pyridines with mGlu2 receptor PAM activity are reported. By modification of the analogous imidazo[1,2-a]pyridine series, the newly reported leads have improved potency, in vitro ADMET, and hERG as well as good in vivo PK profile. The optimization of the series focused on improving metabolic stability while controlling lipophilicity by introducing small modifications to the scaffold substituents. Analysis of this series combined with our previously reported mGlu2 receptor PAMs showed how lipophilic ligand efficiency was improved during the course of the program. Among the best compounds, example 20 (JNJ-42153605) showed a central in vivo efficacy by inhibition of REM sleep state at a dose of 3 mg/kg po in the rat sleep-wake EEG paradigm, a phenomenon shown earlier to be mGlu2 mediated. In mice, compound 20 reversed PCP-induced hyperlocomotion with an ED₅₀ of 5.4 mg/kg sc, indicative of antipsychotic activity.


Neuropsychopharmacology | 2009

How to Keep the Brain Awake? The Complex Molecular Pharmacogenetics of Wake Promotion

Sibah Hasan; Sylvain Pradervand; Abdellah Ahnaou; Wilhelmus Drinkenburg; Mehdi Tafti; Paul Franken

Wake-promoting drugs are widely used to treat excessive daytime sleepiness. The neuronal pathways involved in wake promotion are multiple and often not well characterized. We tested d-amphetamine, modafinil, and YKP10A, a novel wake-promoting compound, in three inbred strains of mice. The wake duration induced by YKP10A and d-amphetamine depended similarly on genotype, whereas opposite strain differences were observed after modafinil. Electroencephalogram (EEG) analysis during drug-induced wakefulness revealed a transient ∼2 Hz slowing of theta oscillations and an increase in beta-2 (20–35 Hz) activity only after YKP10A. Gamma activity (35–60 Hz) was induced by all drugs in a drug- and genotype-dependent manner. Brain transcriptome and clustering analyses indicated that the three drugs have both common and specific molecular signatures. The correlation between specific EEG and gene-expression signatures suggests that the neuronal pathways activated to stay awake vary among drugs and genetic background.


Journal of Medicinal Chemistry | 2012

Imidazo[1,2-a]pyridines: Orally Active Positive Allosteric Modulators of the Metabotropic Glutamate 2 Receptor

Andrés A. Trabanco; Gary Tresadern; Gregor James Macdonald; Juan Antonio Vega; Ana Isabel de Lucas; Encarnación Matesanz; Aránzazu García; María Lourdes Linares; Sergio A. Alonso de Diego; José Manuel Alonso; Daniel Oehlrich; Abdelah Ahnaou; Wilhelmus Drinkenburg; Claire Mackie; José Ignacio Andrés; Hilde Lavreysen; José M. Cid

Advanced leads of an imidazopyridine series of positive allosteric modulators of the metabotropic glutamate 2 (mGlu2) receptor are reported. The optimization of in vitro ADMET and in vivo pharmacokinetic properties led to the identification of 27o. With good potency and selectivity for the mGlu2 receptor, 27o affected sleep-wake architecture in rats after oral treatment, which we have previously shown to be indicative of mGlu2 receptor-mediated central activity.


Behavioural Brain Research | 2014

Hypolocomotive behaviour associated with increased microglia in a prenatal immune activation model with relevance to schizophrenia

Karlien Van den Eynde; Stephan Missault; Erik Fransen; Leen Raeymaekers; Roland Willems; Wilhelmus Drinkenburg; Jean-Pierre Timmermans; Samir Kumar-Singh; Stefanie Dedeurwaerdere

Over the past decade a neurodevelopmental animal model with high validity for schizophrenia has been developed based on the environmental risk factor known as maternal immune activation (MIA). The immunological basis of this model, together with extensive data from clinical and preclinical context, suggests the involvement of an aberrant neuro-immune system in the pathophysiology of schizophrenia. The goal of this study was to examine microglia activation in adult behaviourally phenotyped MIA offspring. MIA was induced in pregnant rats using viral mimetic Poly I:C at gestational day 15. Adult offspring were behaviourally phenotyped at postnatal days (PND) 56, 90 and 180 through the evaluation of prepulse inhibition (PPI) of the acoustic startle and spontaneous locomotion. Finally, the presence of activated microglia in brain regions associated with schizophrenia was evaluated using post-mortem immunohistochemistry against OX-42 (CD11b) and ED-1 (CD68). Although a deficit in PPI could not be replicated despite the high number of animals tested, we found an overall decrease in basal startle response and spontaneous locomotion in offspring born to Poly I:C- compared to saline-treated dams, accompanied by increased microglial density with characteristics of non-reactive activation in the chronic stage of the model. These findings provide additional evidence for a role played by microglial activation in schizophrenia-related pathology in general and psychomotor slowing in particular, and warrant extensive research on the underlying mechanism in order to establish new drug targets for the treatment of schizophrenia patients with an inflammatory component.


Journal of Pharmacology and Experimental Therapeutics | 2012

Translational Evaluation of JNJ-18038683, a 5-Hydroxytryptamine Type 7 Receptor Antagonist, on Rapid Eye Movement Sleep and in Major Depressive Disorder

Pascal Bonaventure; Christine Dugovic; Michelle Kramer; Peter de Boer; Jaskaran Singh; Sue Wilson; Kirk Bertelsen; Jianing Di; Jonathan Shelton; Leah Aluisio; Lisa Dvorak; Ian Fraser; Brian Lord; Diane Nepomuceno; Abdellah Ahnaou; Wilhelmus Drinkenburg; Wenying Chai; Curt A. Dvorak; Steve Sands; Nicholas I. Carruthers; Timothy W. Lovenberg

In rodents 5-hydroxytryptamine type 7 (5-HT7) receptor blockade has been shown to be effective in models of depression and to increase the latency to rapid eye movement (REM) sleep and decrease REM duration. In the clinic, the REM sleep reduction observed with many antidepressants may serve as a biomarker. We report here the preclinical and clinical evaluation of a 5-HT7 receptor antagonist, (3-(4-chlorophenyl)-1,4,5,6,7,8-hexahydro-1-(phenylmethyl)pyrazolo[3,4-d]azepine 2-hydroxy-1,2,3-propanetricarboxylate) (JNJ-18038683). In rodents, JNJ-18038683 increased the latency to REM sleep and decreased REM duration, and this effect was maintained after repeated administration for 7 days. The compound was effective in the mouse tail suspension test. JNJ-18038683 enhanced serotonin transmission, antidepressant-like behavior, and REM sleep suppression induced by citalopram in rodents. In healthy human volunteers JNJ-18038683 prolonged REM latency and reduced REM sleep duration, demonstrating that the effect of 5-HT7 blockade on REM sleep translated from rodents to humans. Like in rats, JNJ-18038683 enhanced REM sleep suppression induced by citalopram in humans, although a drug-drug interaction could not be ruled out. In a double-blind, active, and placebo-controlled clinical trial in 225 patients suffering from major depressive disorder, neither treatment with pharmacologically active doses of JNJ-18038683 or escitalopram separated from placebo, indicating a failed study lacking assay sensitivity. Post hoc analyses using an enrichment window strategy, where all the efficacy data from sites with an implausible high placebo response [placebo group Montgomery-Åsberg Depression Rating Scale (MADRS) < = 12] and from sites with no placebo response (MADRS > = 28) are removed, there was a clinically meaningful difference between JNJ-18038683 and placebo. Further clinical studies are required to characterize the potential antidepressant efficacy of JNJ-18038683.

Collaboration


Dive into the Wilhelmus Drinkenburg's collaboration.

Top Co-Authors

Avatar

A. Ahnaou

Janssen Pharmaceutica

View shared research outputs
Top Co-Authors

Avatar

Claudio Babiloni

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Gianluigi Forloni

Mario Negri Institute for Pharmacological Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A.M.L. Coenen

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Claudio Del Percio

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge