Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wilhelmus J. Kwanten is active.

Publication


Featured researches published by Wilhelmus J. Kwanten.


Journal of Hepatology | 2016

Non-alcoholic fatty liver disease and cardiovascular risk: Pathophysiological mechanisms and implications

Sven Francque; Denise van der Graaff; Wilhelmus J. Kwanten

Non-alcoholic fatty liver disease (NAFLD) has become one of the most frequent chronic liver diseases in the Western society and its prevalence is likely to rise even further. An increasing body of evidence shows that NAFLD is not only a potentially progressive liver disease, but also has systemic consequences. More specifically, evidence points out that NAFLD has to be considered as a significant independent risk factor for subclinical and clinical cardiovascular disease (CVD). Long-term follow-up studies demonstrate cardiovascular mortality to be the most important cause of death in NAFLD patients. Moreover, ample evidence associates NAFLD with endothelial dysfunction, increased pulse wave velocity, increased coronary arterial calcifications and increased carotid intima media thickness, all established markers for CVD. Despite of all this evidence, the mechanisms by which NAFLD causally contributes to CVD are not fully elucidated. Furthermore, an extensive overview of all potential pathophysiological mechanisms and the corresponding current data are lacking. In this review we summarise current knowledge, originating from fundamental and clinical research, that mechanistically links NAFLD to CVD. Subsequently, the impact of CVD on current clinical practice and future research in the area of NALFD are discussed.


World Journal of Gastroenterology | 2014

Role of autophagy in the pathophysiology of nonalcoholic fatty liver disease: a controversial issue.

Wilhelmus J. Kwanten; Wim Martinet; P. Michielsen; Sven Francque

Autophagy is a mechanism involved in cellular homeostasis under basal and stressed conditions delivering cytoplasmic content to the lysosomes for degradation to macronutrients. The potential role of autophagy in disease is increasingly recognised and investigated in the last decade. Nowadays it is commonly accepted that autophagy plays a role in the hepatic lipid metabolism. Hence, dysfunction of autophagy may be an underlying cause of non-alcoholic fatty liver disease. However, controversy of the exact role of autophagy in the lipid metabolism exists: some publications report a lipolytic function of autophagy, whereas others claim a lipogenic function. This review aims to give an update of the present knowledge on autophagy in the hepatic lipid metabolism, hepatic insulin resistance, steatohepatitis and hepatic fibrogenesis.


Laboratory Investigation | 2012

Increased intrahepatic resistance in severe steatosis: endothelial dysfunction, vasoconstrictor overproduction and altered microvascular architecture

Sven Francque; Wim Laleman; Len Verbeke; Christophe Van Steenkiste; Christophe Casteleyn; Wilhelmus J. Kwanten; Christophe Van Dyck; Michiel D'Hondt; Albert Ramon; Wim Vermeulen; Benedicte Y. De Winter; Eric Van Marck; Veerle Van Marck; Paul A. Pelckmans; P. Michielsen

Non-alcoholic fatty liver disease can progress to steatohepatitis and fibrosis, and is also associated with impaired liver regeneration. The pathophysiology remains elusive. We recently showed that severe steatosis is associated with an increase in portal pressure, suggesting liver flow impairment. The objective of this study is to directly assess total intrahepatic resistance and its potential functional and structural determinants in an in situ perfusion model. Male Wistar rats fed a control (n=30) or a methionine–choline-deficient (MCD) diet (n=30) for 4 weeks were compared. Liver tissue and serum analysis, in vivo haemodynamic measurements, in situ perfusion experiments and vascular corrosion casts were performed. The MCD group showed severe steatosis without inflammation or fibrosis on histology. Serum levels and liver tissue gene expression of interleukin (IL)-6, tumour necrosis factor-α, IL-1β and interferon-γ, liver tissue myeloperoxidase activity and liver immunohistochemistry with anti-CD68 and anti-α smooth muscle actin were comparable between groups, excluding significant inflammation. Flow-pressure curves were significantly different between groups for all flows (slope values: 0.1636±0.0605 mm Hg/ml/min in controls vs 0.7270±0.0408 mm Hg/ml/min in MCD-fed rats, P<0.001), indicating an increased intrahepatic resistance, which was haemodynamically significant (portocaval pressure gradient 2.2±1.1 vs 8.2±1.3 mm Hg in controls vs MCD, P<0.001). Dose-response curves to acetylcholine were significantly reduced in MCD-fed rats (P<0.001) as was the responsiveness to methoxamine (P<0.001). Vascular corrosion casts showed a replacement of the regular sinusoidal anatomy by a disorganized pattern with multiple interconnections and vascular extensions. Liver phosphorylated endothelial NO synthase (eNOS)/eNOS and serum nitrite/nitrate were not increased in severe steatosis, whereas liver thromboxane synthase expression, liver endothelin-1 (ET-1) expression and serum andothelin-1 concentration were significantly increased. Severe steatosis induces a haemodynamically significant increase in intrahepatic resistance, which precedes inflammation and fibrogenesis. Both functional (endothelial dysfunction and increased thromboxane and ET-1 synthesis) and structural factors are involved. This phenomenon might significantly contribute to steatosis-related disease.


JCI insight | 2017

Interspecies NASH disease activity whole-genome profiling identifies a fibrogenic role of PPAR α -regulated dermatopontin

Philippe Lefebvre; Fanny Lalloyer; Eric Baugé; Michal Pawlak; Céline Gheeraert; Hélène Dehondt; Jonathan Vanhoutte; Eloise Woitrain; Nathalie Hennuyer; Claire Mazuy; Marie Bobowski-Gérard; Francesco Zummo; Bruno Derudas; A. Driessen; G. Hubens; Luisa Vonghia; Wilhelmus J. Kwanten; P. Michielsen; Thomas Vanwolleghem; Jérôme Eeckhoute; An Verrijken; Luc Van Gaal; Sven Francque; Bart Staels

Nonalcoholic fatty liver disease prevalence is soaring with the obesity pandemic, but the pathogenic mechanisms leading to the progression toward active nonalcoholic steatohepatitis (NASH) and fibrosis, major causes of liver-related death, are poorly defined. To identify key components during the progression toward NASH and fibrosis, we investigated the liver transcriptome in a human cohort of NASH patients. The transition from histologically proven fatty liver to NASH and fibrosis was characterized by gene expression patterns that successively reflected altered functions in metabolism, inflammation, and epithelial-mesenchymal transition. A meta-analysis combining our and public human transcriptomic datasets with murine models of NASH and fibrosis defined a molecular signature characterizing NASH and fibrosis and evidencing abnormal inflammation and extracellular matrix (ECM) homeostasis. Dermatopontin expression was found increased in fibrosis, and reversal of fibrosis after gastric bypass correlated with decreased dermatopontin expression. Functional studies in mice identified an active role for dermatopontin in collagen deposition and fibrosis. PPARα activation lowered dermatopontin expression through a transrepressive mechanism affecting the Klf6/TGFβ1 pathway. Liver fibrotic histological damages are thus characterized by the deregulated expression of a restricted set of inflammation- and ECM-related genes. Among them, dermatopontin may be a valuable target to reverse the hepatic fibrotic process.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2016

Hepatocellular autophagy modulates the unfolded protein response and fasting-induced steatosis in mice.

Wilhelmus J. Kwanten; Yves-Paul Vandewynckel; Wim Martinet; Benedicte Y. De Winter; P. Michielsen; Viviane Van Hoof; A. Driessen; Jean-Pierre Timmermans; Pierre Bedossa; Hans Van Vlierberghe; Sven Francque

Autophagy and the unfolded protein response (UPR) are key cellular homeostatic mechanisms and are both involved in liver diseases, including nonalcoholic fatty liver disease (NAFLD). Although increasing but conflicting results link these mechanisms to lipid metabolism, their role and potential cross talk herein have been poorly investigated. Therefore, we assessed the effects of hepatocyte-specific autophagy deficiency on liver parenchyma, the UPR, and lipid metabolism. Adult hepatocellular-specific autophagy-deficient mice (Atg7F/FAlb-Cre+) were compared with their autophagy-competent littermates (Atg7+/+Alb-Cre+). Livers were analyzed by electron microscopy, histology, real-time qPCR, and Western blotting. Atg7F/FAlb-Cre+ mice developed hepatomegaly with significant parenchymal injury, as shown by inflammatory infiltrates, hepatocellular apoptosis, pericellular fibrosis, and a pronounced ductular reaction. Surprisingly, the UPR exhibited a pathway-selective pattern upon autophagy deficiency. The activity of the adaptive activating transcription factor 6 (ATF6) pathway was abolished, whereas the proapoptotic protein kinase RNA-like ER kinase pathway was increased compared with Atg7+/+Alb-Cre+ mice. The inositol-requiring enzyme-1α signal was unaltered. Fasting-induced steatosis was absent in Atg7F/FAlb-Cre+ mice. Remarkably, some isolated islands of fat-containing and autophagy-competent cells were observed in these livers. Hepatocellular autophagy is essential for parenchymal integrity in mice. Moreover, in the case of autophagy deficiency, the three different UPR branches are pathway selectively modulated. Attenuation of the ATF6 pathway might explain the observed impairment of fasting-induced steatosis. Finally, autophagy and lipid droplets are directly linked to each other.


Hepatology | 2017

Autophagy determines efficiency of liver‐directed gene therapy with adeno‐associated viral vectors

Marianna Hösel; Anke Huber; Susanne Bohlen; Julie Lucifora; Giuseppe Ronzitti; Francesco Puzzo; Florence Boisgerault; Ulrich Hacker; Wilhelmus J. Kwanten; Nora Klöting; Matthias Blüher; Michael Schramm; Olaf Utermöhlen; Wilhelm Bloch; Federico Mingozzi; Oleg Krut; Hildegard Büning

Use of adeno‐associated viral (AAV) vectors for liver‐directed gene therapy has shown considerable success, particularly in patients with severe hemophilia B. However, the high vector doses required to reach therapeutic levels of transgene expression caused liver inflammation in some patients that selectively destroyed transduced hepatocytes. We hypothesized that such detrimental immune responses can be avoided by enhancing the efficacy of AAV vectors in hepatocytes. Because autophagy is a key liver response to environmental stresses, we characterized the impact of hepatic autophagy on AAV infection. We found that AAV induced mammalian target of rapamycin (mTOR)–dependent autophagy in human hepatocytes. This cell response was critically required for efficient transduction because under conditions of impaired autophagy (pharmacological inhibition, small interfering RNA knockdown of autophagic proteins, or suppression by food intake), recombinant AAV‐mediated transgene expression was markedly reduced, both in vitro and in vivo. Taking advantage of this dependence, we employed pharmacological inducers of autophagy to increase the level of autophagy. This resulted in greatly improved transduction efficiency of AAV vectors in human and mouse hepatocytes independent of the transgene, driving promoter, or AAV serotype and was subsequently confirmed in vivo. Specifically, short‐term treatment with a single dose of torin 1 significantly increased vector‐mediated hepatic expression of erythropoietin in C57BL/6 mice. Similarly, coadministration of rapamycin with AAV vectors resulted in markedly enhanced expression of human acid‐α‐glucosidase in nonhuman primates. Conclusion: We identified autophagy as a pivotal cell response determining the efficiency of AAVs intracellular processing in hepatocytes and thus the outcome of liver‐directed gene therapy using AAV vectors and showed in a proof‐of‐principle study how this virus–host interaction can be employed to enhance efficacy of this vector system. (Hepatology 2017;66:252–265).


Laboratory Investigation | 2018

Severe steatosis induces portal hypertension by systemic arterial hyporeactivity and hepatic vasoconstrictor hyperreactivity in rats

Denise van der Graaff; Wilhelmus J. Kwanten; Filip J. Couturier; Jesse S Govaerts; Wim Verlinden; Isabel Brosius; Michiel D’Hondt; A. Driessen; Benedicte Y. De Winter; Joris G. De Man; P. Michielsen; Sven Francque

Non-alcoholic fatty liver disease (NAFLD) has become the most prevalent chronic liver disease. The presence of portal hypertension has been demonstrated in NAFLD prior to development of inflammation or fibrosis, and is a result of extrahepatic and intrahepatic factors, principally driven by vascular dysfunction. An increased intrahepatic vascular resistance potentially contributes to progression of NAFLD via intralobular hypoxia. However, the exact mechanisms underlying vascular dysfunction in NAFLD remain unknown. This study investigates systemic hemodynamics and both aortic and intrahepatic vascular reactivity in a rat model of severe steatosis. Wistar rats were fed a methionine-choline-deficient diet, inducing steatosis, or control diet for 4 weeks. In vivo hemodynamic measurements, aortic contractility studies, and in situ liver perfusion experiments were performed. The mean arterial blood pressure was lower and portal blood pressure was higher in steatosis compared to controls. The maximal contraction force in aortic rings from steatotic rats was markedly reduced compared to controls. While blockade of nitric oxide (NO) production did not reveal any differences, cyclooxygenase (COX) blockade reduced aortic reactivity in both controls and steatosis, whereas effects were more pronounced in controls. Effects could be attributed to COX-2 iso-enzyme activity. In in situ liver perfusion experiments, exogenous NO donation or endogenous NO stimulation reduced the transhepatic pressure gradient (THPG), whereas NO synthase blockade increased the THPG only in steatosis, but not in controls. Alpha-1-adrenergic stimulation and endothelin-1 induced a significantly more pronounced increase in THPG in steatosis compared to controls. Our results demonstrate that severe steatosis, without inflammation or fibrosis, induces portal hypertension and signs of a hyperdynamic circulation, accompanied by extrahepatic arterial hyporeactivity and intrahepatic vascular hyperreactivity. The arterial hyporeactivity seems to be NO-independent, but appears to be mediated by specific COX-2-related mechanisms. Besides, the increased intrahepatic vascular resistance in steatosis appears not to be NO-related but rather to vasoconstrictor hyperreactivity.In this study, systemic hemodynamics and both aortic and intrahepatic vascular reactivity in a rat model of severe steatosis were investigated. Portal hypertension and signs of a hyperdynamic circulation were demonstrated. NO-independent, COX-2 mediated extrahepatic arterial hyporeactivity, as well as NO-independent alpha-1-adrenergic and endotheline-1 mediated intrahepatic vascular hyperreactivity are demonstrated, likely contributing to the observed portal hypertension in steatosis.


Archive | 2016

Autophagy in Non-Alcoholic Fatty Liver Disease (NAFLD)

Wilhelmus J. Kwanten; Wim Martinet; Sven Francque

Autophagy is a mechanism involved in cellular homeostasis under basal and stressed conditions delivering cytoplasmic content to the lysosomes for degradation to macronutrients. The potential role of autophagy in disease is increasingly recognised and investigated. To date, a key role of autophagy in hepatic lipid metabolism is recognised and dysfunctional autophagy might be an underlying cause of non-alcoholic fatty liver disease (NAFLD). Nevertheless, the exact role of autophagy in lipid metabolism remains controversial, with both a lipolytic function of autophagy and lipogenic function reported. This chapter aims to review the current knowledge on autophagy in NAFLD, with a special focus on its role in hepatic lipid metabolism, hepatic glucose metabolism and insulin resistance, steatohepatitis, hepatocellular injury and hepatic fibrogenesis. Finally, interaction with another cellular homeostatic process, the unfolded protein response (UPR), will be briefly discussed.


Journal of Hepatology | 2014

O24 HEPATOCYTE SPECIFIC KNOCK-OUT OF AUTOPHAGY INDUCES LIVER INJURY, BUT INHIBITS STEATOSIS AND IMPROVES SERUM LIPIDS IN MICE FED A CONTROL AND METHIONINE CHOLINE DEFICIENT DIET

Wilhelmus J. Kwanten; Wim Martinet; B. Y. De Winter; V.V. Van Hoof; Pierre Bedossa; P. Michielsen; S. Francque


Journal of Hepatology | 2018

Hyperreactivity to vasoconstrictors in a rat model of nonalcoholic fatty liver disease

D. van der Graaff; Wilhelmus J. Kwanten; J. De Man; B. Y. De Winter; P. Michielsen; S. Francque

Collaboration


Dive into the Wilhelmus J. Kwanten's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Len Verbeke

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

G. Hubens

University of Antwerp

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge