Willem Huijbers
Harvard University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Willem Huijbers.
Neurology | 2014
Elizabeth C. Mormino; Rebecca A. Betensky; Trey Hedden; Aaron P. Schultz; Andrew Ward; Willem Huijbers; Dorene M. Rentz; Keith Johnson; Reisa A. Sperling
Objective: To examine whether β-amyloid (Aβ) and APOE ε4 status independently contribute or interact to influence longitudinal cognitive decline in clinically normal older individuals (CN). Methods: Data from 490 CNs were aggregated across 3 observational cohort studies (Harvard Aging Brain Study, Alzheimers Disease Neuroimaging Initiative, and Australian Imaging Biomarkers and Lifestyle Study of Ageing; median age = 75.0 years, 255 female), and the contributions of APOE ε4 and Aβ on longitudinal change over a median of 1.49 years were examined. Cognitive decline was assessed with the Mini-Mental State Examination (MMSE) and Logical Memory (immediate and delayed recall scores). Results: High Aβ participants were more likely to be APOE ε4+ than low Aβ participants. CNs who were both high Aβ and APOE ε4+ showed greater decline in Logical Memory immediate recall (p < 0.087), Logical Memory delayed recall (p < 0.024), and MMSE (p < 0.034) compared to all other groups (low Aβ/APOE ε4−, low Aβ/APOE ε4+, and high Aβ/APOE ε4−). No other pairwise contrast was significant for any cognitive measure. Conclusions: Clinically normal individuals who are APOE ε4+ and have high Aβ showed the highest cognitive decline. These results suggest that Aβ and APOE ε4 are not redundant contributors of decline in aging but rather interact to promote decline during the short follow-up period examined in this study. Longer follow-up periods will be essential to fully elucidate the influence of Alzheimer disease risk factors on cognitive decline in aging.
Human Brain Mapping | 2014
Andrew Ward; Aaron P. Schultz; Willem Huijbers; Koene R.A. Van Dijk; Trey Hedden; Reisa A. Sperling
The default‐mode network (DMN) is a distributed functional‐anatomic network implicated in supporting memory. Current resting‐state functional connectivity studies in humans remain divided on the exact involvement of medial temporal lobe (MTL) in this network at rest. Notably, it is unclear to what extent the MTL regions involved in successful memory encoding are connected to the cortical nodes of the DMN during resting state. Our findings using functional connectivity MRI analyses of resting‐state data indicate that the parahippocampal gyrus (PHG) is the primary hub of the DMN in the MTL during resting state. Also, connectivity of the PHG is distinct from connectivity of hippocampal regions identified by an associative memory‐encoding task. We confirmed that several hippocampal encoding regions lack significant functional connectivity with cortical DMN nodes during resting state. Additionally, a mediation analysis showed that resting‐state connectivity between the hippocampus and posterior cingulate cortex—a major hub of the DMN—is indirect and mediated by the PHG. Our findings support the hypothesis that the MTL memory system represents a functional subnetwork that relates to the cortical nodes of the DMN through parahippocampal functional connections. Hum Brain Mapp 35:1061–1073, 2014.
PLOS ONE | 2011
Willem Huijbers; Cyriel M. A. Pennartz; Roberto Cabeza; Sander M. Daselaar
The brains default mode network (DMN) is activated during internally-oriented tasks and shows strong coherence in spontaneous rest activity. Despite a surge of recent interest, the functional role of the DMN remains poorly understood. Interestingly, the DMN activates during retrieval of past events but deactivates during encoding of novel events into memory. One hypothesis is that these opposing effects reflect a difference between attentional orienting towards internal events, such as retrieved memories, vs. external events, such as to-be-encoded stimuli. Another hypothesis is that hippocampal regions are coupled with the DMN during retrieval but decoupled from the DMN during encoding. The present fMRI study investigated these two hypotheses by combining a resting-state coherence analysis with a task that measured the encoding and retrieval of both internally-generated and externally-presented events. Results revealed that the main DMN regions were activated during retrieval but deactivated during encoding. Counter to the internal orienting hypothesis, this pattern was not modulated by whether memory events were internal or external. Consistent with the hippocampal coupling hypothesis, the hippocampus behaved like other DMN regions during retrieval but not during encoding. Taken together, our findings clarify the relationship between the DMN and the neural correlates of memory retrieval and encoding.
Neuropsychologia | 2011
Willem Huijbers; Cyriel M. A. Pennartz; David C. Rubin; Sander M. Daselaar
Remembering past events - or episodic retrieval - consists of several components. There is evidence that mental imagery plays an important role in retrieval and that the brain regions supporting imagery overlap with those supporting retrieval. An open issue is to what extent these regions support successful vs. unsuccessful imagery and retrieval processes. Previous studies that examined regional overlap between imagery and retrieval used uncontrolled memory conditions, such as autobiographical memory tasks, that cannot distinguish between successful and unsuccessful retrieval. A second issue is that fMRI studies that compared imagery and retrieval have used modality-aspecific cues that are likely to activate auditory and visual processing regions simultaneously. Thus, it is not clear to what extent identified brain regions support modality-specific or modality-independent imagery and retrieval processes. In the current fMRI study, we addressed this issue by comparing imagery to retrieval under controlled memory conditions in both auditory and visual modalities. We also obtained subjective measures of imagery quality allowing us to dissociate regions contributing to successful vs. unsuccessful imagery. Results indicated that auditory and visual regions contribute both to imagery and retrieval in a modality-specific fashion. In addition, we identified four sets of brain regions with distinct patterns of activity that contributed to imagery and retrieval in a modality-independent fashion. The first set of regions, including hippocampus, posterior cingulate cortex, medial prefrontal cortex and angular gyrus, showed a pattern common to imagery/retrieval and consistent with successful performance regardless of task. The second set of regions, including dorsal precuneus, anterior cingulate and dorsolateral prefrontal cortex, also showed a pattern common to imagery and retrieval, but consistent with unsuccessful performance during both tasks. Third, left ventrolateral prefrontal cortex showed an interaction between task and performance and was associated with successful imagery but unsuccessful retrieval. Finally, the fourth set of regions, including ventral precuneus, midcingulate cortex and supramarginal gyrus, showed the opposite interaction, supporting unsuccessful imagery, but successful retrieval performance. Results are discussed in relation to reconstructive, attentional, semantic memory, and working memory processes. This is the first study to separate the neural correlates of successful and unsuccessful performance for both imagery and retrieval and for both auditory and visual modalities.
Neuropsychologia | 2012
Willem Huijbers; Patrizia Vannini; Reisa A. Sperling; Cyriel M. A. Pennartz; Roberto Cabeza; Sander M. Daselaar
The posteromedial cortex (PMC) is strongly linked to episodic memory and age-related memory deficits. The PMC shows deactivations during a variety of demanding cognitive tasks as compared to passive baseline conditions and has been associated with the default-mode of the brain. Interestingly, the PMC exhibits opposite levels of functional MRI activity during encoding (learning) and retrieval (remembering), a pattern dubbed the encoding/retrieval flip (E/R-flip). Yet, the exact role of the PMC in memory function has remained unclear. This review discusses the possible neurofunctional and clinical significance of the E/R-flip pattern. Regarding neurofunctional relevance, we will review four hypotheses on PMC function: (1) the internal orienting account, (2) the self-referential processing account, (3) the reallocation account, and (4) the bottom-up attention account. None of these accounts seem to provide a complete explanation for the E/R-flip pattern in PMC. Regarding clinical relevance, we review work on aging and Alzheimers disease, indicating that amyloid deposits within PMC, years before clinical memory deficits become apparent. High amyloid burden within PMC is associated with detrimental influences on memory encoding, in particular, the attenuation of beneficial PMC deactivations. Finally, we discuss functional subdivisions within PMC that help to provide a more precise picture of the variety of signals observed within PMC. Collective data from anatomical, task-related fMRI and resting-state studies all indicate that the PMC is composed of three main regions, the precuneus, retrosplenial, and posterior cingulate cortex, each with a distinct function. We will conclude with a summary of the findings and provide directions for future research.
Brain | 2015
Willem Huijbers; Elizabeth C. Mormino; Aaron P. Schultz; Sarah Wigman; Andrew Ward; Mykol Larvie; Rebecca Amariglio; Gad A. Marshall; Dorene M. Rentz; Keith Johnson; Reisa A. Sperling
Cross-sectional functional magnetic resonance imaging studies using a memory task in patients with mild cognitive impairment have produced discordant results, with some studies reporting increased hippocampal activity--consistent with findings in genetic at-risk populations--and other studies reporting decreased hippocampal activity, relative to normal controls. However, previous studies in mild cognitive impairment have not included markers of amyloid-β, which may be particularly important in prediction of progression along the Alzheimers disease continuum. Here, we examine the contribution of amyloid-β deposition to cross-sectional and longitudinal measures of hippocampal functional magnetic resonance imaging activity, hippocampal volume, global cognition and clinical progression over 36 months in 33 patients with mild cognitive impairment. Amyloid-β status was examined with positron emission tomography imaging using Pittsburg compound-B, hippocampal functional magnetic resonance imaging activity was assessed using an associative face-name memory encoding task, and hippocampal volume was quantified with structural magnetic resonance imaging. Finally global cognition was assessed using the Mini-Mental State Examination and clinical progression was assessed using the Clinical Dementia Rating (Sum of Boxes). At baseline, amyloid-β positive patients with mild cognitive impairment showed increased hippocampal activation, smaller hippocampal volumes, and a trend towards lower Mini-Mental State Examination scores and higher Clinical Dementia Ratings compared to amyloid-β negative patients with mild cognitive impairment. Longitudinally, amyloid-β positive patients with mild cognitive impairment continued to show high levels of hippocampal activity, despite increasing rates of hippocampal atrophy, decline on the Mini-Mental State Examination and faster progression on the Clinical Dementia Ratings. When entered simultaneously into the same linear mixed model, amyloid-β status, hippocampal activation, and hippocampal volume independently predicted clinical progression. These results indicate that amyloid-β positive patients with mild cognitive impairment are more likely on a path towards Alzheimers disease dementia than amyloid-β negative patients. Increased hippocampal activity is discussed in relation to neuronal compensation and/or amyloid-β induced excitoxicity.
The Journal of Neuroscience | 2014
Willem Huijbers; Elizabeth C. Mormino; Sarah Wigman; Andrew Ward; Patrizia Vannini; Donald G. McLaren; John A. Becker; Aaron P. Schultz; Trey Hedden; Keith Johnson; Reisa A. Sperling
Normal aging is often difficult to distinguish from the earliest stages of Alzheimers disease. Years before clinical memory deficits manifest, amyloid-β deposits in the cortex in many older individuals. Neuroimaging studies indicate that a set of densely connected neocortical regions, referred to as the default network, is especially vulnerable to amyloid-β deposition. Yet, the impact of amyloid-β on age-related changes within the medial temporal lobe (MTL) memory system is less clear. Here we demonstrate that cognitively normal older humans, compared with young adults, show reduced ability to modulate hippocampal activations and entorhinal deactivations during an episodic memory task. Among older adults, amyloid-β deposition was associated with failure to modulate activity in entorhinal cortex, but not hippocampus. Furthermore, we show that entorhinal regions demonstrating amyloid-β-related dysfunction are directly connected to the neocortical regions of the default network. Together these findings link neocortical amyloid-β deposition to neuronal dysfunction specifically in entorhinal cortex, while aging is associated with more widespread functional changes across the MTL.
Neurobiology of Aging | 2015
Andrew Ward; Elizabeth C. Mormino; Willem Huijbers; Aaron P. Schultz; Trey Hedden; Reisa A. Sperling
Advanced aging negatively impacts memory performance. Brain aging has been associated with shrinkage in medial temporal lobe structures essential for memory--including hippocampus and entorhinal cortex--and with deficits in default-mode network connectivity. Yet, whether and how these imaging markers are relevant to age-related memory deficits remains a topic of debate. Using a sample of 182 older (age 74.6 ± 6.2 years) and 66 young (age 22.2 ± 3.6 years) participants, this study examined relationships among memory performance, hippocampus volume, entorhinal cortex thickness, and default-mode network connectivity across aging. All imaging markers and memory were significantly different between young and older groups. Each imaging marker significantly mediated the relationship between age and memory performance and collectively accounted for most of the variance in age-related memory performance. Within older participants, default-mode connectivity and hippocampus volume were independently associated with memory. Structural equation modeling of cross-sectional data within older participants suggest that entorhinal thinning may occur before reduced default-mode connectivity and hippocampal volume loss, which in turn lead to deficits in memory performance.
PLOS Biology | 2009
Willem Huijbers; Cyriel M. A. Pennartz; Roberto Cabeza; Sander M. Daselaar
Recent functional neuroimaging evidence suggests a bottleneck between learning new information and remembering old information. In two behavioral experiments and one functional MRI (fMRI) experiment, we tested the hypothesis that learning and remembering compete when both processes happen within a brief period of time. In the first behavioral experiment, participants intentionally remembered old words displayed in the foreground, while incidentally learning new scenes displayed in the background. In line with a memory competition, we found that remembering old information was associated with impaired learning of new information. We replicated this finding in a subsequent fMRI experiment, which showed that this behavioral effect was coupled with a suppression of learning-related activity in visual and medial temporal areas. Moreover, the fMRI experiment provided evidence that left mid-ventrolateral prefrontal cortex is involved in resolving the memory competition, possibly by facilitating rapid switching between learning and remembering. Critically, a follow-up behavioral experiment in which the background scenes were replaced with a visual target detection task provided indications that the competition between learning and remembering was not merely due to attention. This study not only provides novel insight into our capacity to learn and remember, but also clarifies the neural mechanisms underlying flexible behavior.
Journal of Cognitive Neuroscience | 2013
Willem Huijbers; Aaron P. Schultz; Patrizia Vannini; Donald G. McLaren; Sarah Wigman; Andrew Ward; Trey Hedden; Reisa A. Sperling
fMRI studies have linked the posteromedial cortex to episodic learning (encoding) and remembering (retrieval) processes. The posteromedial cortex is considered part of the default network and tends to deactivate during encoding but activate during retrieval, a pattern known as the encoding/retrieval flip. Yet, the exact relationship between the neural correlates of memory performance (hit/miss) and memory stage (encoding/retrieval) and the extent of overlap with intrinsic cortical networks remains to be elucidated. Using task-based fMRI, we isolated the pattern of activity associated with memory performance, memory stage, and the interaction between both. Using resting-state fMRI, we identified which intrinsic large-scale functional networks overlapped with regions showing task-induced effects. Our results demonstrated an effect of successful memory performance in regions associated with the control network and an effect of unsuccessful memory performance in the ventral attention network. We found an effect of memory retrieval in brain regions that span the default and control networks. Finally, we found an interaction between memory performance and memory stage in brain regions associated with the default network, including the posteromedial cortex, posterior parietal cortex, and parahippocampal cortex. We discuss these findings in relation to the encoding/retrieval flip. In general, the findings demonstrate that task-induced effects cut across intrinsic cortical networks. Furthermore, regions within the default network display functional dissociations, and this may have implications for the neural underpinnings of age-related memory disorders.