Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where William A. Cantara is active.

Publication


Featured researches published by William A. Cantara.


Nucleic Acids Research | 2011

The RNA modification database, RNAMDB: 2011 update

William A. Cantara; Pamela F. Crain; Jef Rozenski; James A. McCloskey; Kimberly A. Harris; Xiaonong Zhang; Franck A. P. Vendeix; Daniele Fabris; Paul F. Agris

Since its inception in 1994, The RNA Modification Database (RNAMDB, http://rna-mdb.cas.albany.edu/RNAmods/) has served as a focal point for information pertaining to naturally occurring RNA modifications. In its current state, the database employs an easy-to-use, searchable interface for obtaining detailed data on the 109 currently known RNA modifications. Each entry provides the chemical structure, common name and symbol, elemental composition and mass, CA registry numbers and index name, phylogenetic source, type of RNA species in which it is found, and references to the first reported structure determination and synthesis. Though newly transferred in its entirety to The RNA Institute, the RNAMDB continues to grow with two notable additions, agmatidine and 8-methyladenosine, appended in the last year. The RNA Modification Database is staying up-to-date with significant improvements being prepared for inclusion within the next year and the following year. The expanded future role of The RNA Modification Database will be to serve as a primary information portal for researchers across the entire spectrum of RNA-related research.


Journal of Molecular Biology | 2012

Human tRNA(Lys3)(UUU) Is Pre-Structured by Natural Modifications for Cognate and Wobble Codon Binding through Keto-Enol Tautomerism.

Franck A. P. Vendeix; Frank V. Murphy; William A. Cantara; Grazyna Leszczynska; Estella M. Gustilo; Brian S. Sproat; Andrzej Malkiewicz; Paul F. Agris

Human tRNA(Lys3)(UUU) (htRNA(Lys3)(UUU)) decodes the lysine codons AAA and AAG during translation and also plays a crucial role as the primer for HIV-1 (human immunodeficiency virus type 1) reverse transcription. The posttranscriptional modifications 5-methoxycarbonylmethyl-2-thiouridine (mcm(5)s(2)U(34)), 2-methylthio-N(6)-threonylcarbamoyladenosine (ms(2)t(6)A(37)), and pseudouridine (Ψ(39)) in the tRNAs anticodon domain are critical for ribosomal binding and HIV-1 reverse transcription. To understand the importance of modified nucleoside contributions, we determined the structure and function of this tRNAs anticodon stem and loop (ASL) domain with these modifications at positions 34, 37, and 39, respectively (hASL(Lys3)(UUU)-mcm(5)s(2)U(34);ms(2)t(6)A(37);Ψ(39)). Ribosome binding assays in vitro revealed that the hASL(Lys3)(UUU)-mcm(5)s(2)U(34);ms(2)t(6)A(37);Ψ(39) bound AAA and AAG codons, whereas binding of the unmodified ASL(Lys3)(UUU) was barely detectable. The UV hyperchromicity, the circular dichroism, and the structural analyses indicated that Ψ(39) enhanced the thermodynamic stability of the ASL through base stacking while ms(2)t(6)A(37) restrained the anticodon to adopt an open loop conformation that is required for ribosomal binding. The NMR-restrained molecular-dynamics-derived solution structure revealed that the modifications provided an open, ordered loop for codon binding. The crystal structures of the hASL(Lys3)(UUU)-mcm(5)s(2)U(34);ms(2)t(6)A(37);Ψ(39) bound to the 30S ribosomal subunit with each codon in the A site showed that the modified nucleotides mcm(5)s(2)U(34) and ms(2)t(6)A(37) participate in the stability of the anticodon-codon interaction. Importantly, the mcm(5)s(2)U(34)·G(3) wobble base pair is in the Watson-Crick geometry, requiring unusual hydrogen bonding to G in which mcm(5)s(2)U(34) must shift from the keto to the enol form. The results unambiguously demonstrate that modifications pre-structure the anticodon as a key prerequisite for efficient and accurate recognition of cognate and wobble codons.


Nucleic Acids Research | 2008

Synthesis and investigation of the 5-formylcytidine modified, anticodon stem and loop of the human mitochondrial tRNAMet

Hrvoje Lusic; Estella M. Gustilo; Franck A. P. Vendeix; Rob Kaiser; Michael O. Delaney; William D. Graham; Virginia A. Moye; William A. Cantara; Paul F. Agris; Alexander Deiters

Human mitochondrial methionine transfer RNA (hmtRNAMetCAU) has a unique post-transcriptional modification, 5-formylcytidine, at the wobble position-34 (f5C34). The role of this modification in (hmtRNAMetCAU) for the decoding of AUA, as well as AUG, in both the peptidyl- and aminoacyl-sites of the ribosome in either chain initiation or chain elongation is still unknown. We report the first synthesis and analyses of the tRNAs anticodon stem and loop domain containing the 5-formylcytidine modification. The modification contributes to the tRNAs anticodon domain structure, thermodynamic properties and its ability to bind codons AUA and AUG in translational initiation and elongation.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Expanded use of sense codons is regulated by modified cytidines in tRNA

William A. Cantara; Frank V. Murphy; Hasan Demirci; Paul F. Agris

Codon use among the three domains of life is not confined to the universal genetic code. With only 22 tRNA genes in mammalian mitochondria, exceptions from the universal code are necessary for proper translation. A particularly interesting deviation is the decoding of the isoleucine AUA codon as methionine by the one mitochondrial-encoded tRNAMet. This tRNA decodes AUA and AUG in both the A- and P-sites of the metazoan mitochondrial ribosome. Enrichment of posttranscriptional modifications is a commonly appropriated mechanism for modulating decoding rules, enabling some tRNA functions while restraining others. In this case, a modification of cytidine, 5-formylcytidine (f5C), at the wobble position-34 of human mitochondrial () enables expanded decoding of AUA, resulting in a deviation in the genetic code. Visualization of the codon•anticodon interaction by X-ray crystallography revealed that recognition of both A and G at the third position of the codon occurs in the canonical Watson–Crick geometry. A modification-dependent shift in the tautomeric equilibrium toward the rare imino-oxo tautomer of cytidine stabilizes the f5C34•A base pair geometry with two hydrogen bonds.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Small-angle X-ray scattering-derived structure of the HIV-1 5′ UTR reveals 3D tRNA mimicry

Christopher P. Jones; William A. Cantara; Erik D. Olson; Karin Musier-Forsyth

Significance A highly conserved region of the HIV-1 RNA genome is responsible for regulating numerous steps of the retroviral life cycle, including initiation of reverse transcription. A complete understanding of the mechanisms controlling HIV-1 replication requires structural characterization of this RNA; unfortunately, however, its large size and conformational flexibility makes common methods of solving structures, such as X-ray crystallography and NMR, exceedingly difficult. The present study uses a solution technique, small-angle X-ray scattering coupled with computational molecular modeling, to characterize three ∼100-nucleotide RNAs that play central roles in HIV-1 replication. One of these domains mimics the L-shaped fold of tRNA, providing a structural basis for understanding how this genomic RNA coordinates interactions with a tRNA-binding host factor to facilitate initiation of reverse transcription. The most conserved region of the HIV type 1 (HIV-1) genome, the ∼335-nt 5′ UTR, is characterized by functional stem loop domains responsible for regulating the viral life cycle. Despite the indispensable nature of this region of the genome in HIV-1 replication, 3D structures of multihairpin domains of the 5′ UTR remain unknown. Using small-angle X-ray scattering and molecular dynamics simulations, we generated structural models of the transactivation (TAR)/polyadenylation (polyA), primer-binding site (PBS), and Psi-packaging domains. TAR and polyA form extended, coaxially stacked hairpins, consistent with their high stability and contribution to the pausing of reverse transcription. The Psi domain is extended, with each stem loop exposed for interactions with binding partners. The PBS domain adopts a bent conformation resembling the shape of a tRNA in apo and primer-annealed states. These results provide a structural basis for understanding several key molecular mechanisms underlying HIV-1 replication.


Journal of Molecular Biology | 2012

Modifications Modulate Anticodon Loop Dynamics and Codon Recognition of E. coli tRNAArg1,2

William A. Cantara; Yann Bilbille; Jia Kim; Rob Kaiser; Grazyna Leszczynska; Andrzej Malkiewicz; Paul F. Agris

Three of six arginine codons are read by two tRNA(Arg) isoacceptors in Escherichia coli. The anticodon stem and loop of these isoacceptors (ASL(Arg1,2)) differs only in that the position 32 cytidine of tRNA(Arg1) is posttranscriptionally modified to 2-thiocytidine (s(2)C(32)). The tRNA(Arg1,2) are also modified at positions 34 (inosine, I(34)) and 37 (2-methyladenosine, m(2)A(37)). To investigate the roles of modifications in the structure and function, we analyzed six ASL(Arg1,2) constructs differing in their array of modifications by spectroscopy and codon binding assays. Thermal denaturation and circular dichroism spectroscopy indicated that modifications contribute thermodynamic and base stacking properties, resulting in more order but less stability. NMR-derived structures of the ASL(Arg1,2) showed that the solution structures of the ASLs were nearly identical. Surprisingly, none possessed the U-turn conformation required for effective codon binding on the ribosome. Yet, all ASL(Arg1,2) constructs efficiently bound the cognate CGU codon. Three ASLs with I(34) were able to decode CGC, whereas only the singly modified ASL(Arg1,2)(ICG) with I(34) was able to decode CGA. The dissociation constants for all codon bindings were physiologically relevant (0.4-1.4 μM). However, with the introduction of s(2)C(32) or m(2)A(37) to ASL(Arg1,2)(ICG), the maximum amount of ASL bound to CGU and CGC was significantly reduced. These results suggest that, by allowing loop flexibility, the modifications modulate the conformation of the ASL(Arg1,2), which takes one structure free in solution and two others when bound to the cognate arginyl-tRNA synthetase or to codons on the ribosome where modifications reduce or restrict binding to specific codons.


Virus Research | 2014

Progress and outlook in structural biology of large viral RNAs

William A. Cantara; Erik D. Olson; Karin Musier-Forsyth

Abstract The field of viral molecular biology has reached a precipice for which pioneering studies on the structure of viral RNAs are beginning to bridge the gap. It has become clear that viral genomic RNAs are not simply carriers of hereditary information, but rather are active players in many critical stages during replication. Indeed, functions such as cap-independent translation initiation mechanisms are, in some cases, primarily driven by RNA structural determinants. Other stages including reverse transcription initiation in retroviruses, nuclear export and viral packaging are specifically dependent on the proper 3-dimensional folding of multiple RNA domains to recruit necessary viral and host factors required for activity. Furthermore, a large-scale conformational change within the 5′-untranslated region of HIV-1 has been proposed to regulate the temporal switch between viral protein synthesis and packaging. These RNA-dependent functions are necessary for replication of many human disease-causing viruses such as severe acute respiratory syndrome (SARS)-associated coronavirus, West Nile virus, and HIV-1. The potential for antiviral development is currently hindered by a poor understanding of RNA-driven molecular mechanisms, resulting from a lack of structural information on large RNAs and ribonucleoprotein complexes. Herein, we describe the recent progress that has been made on characterizing these large RNAs and provide brief descriptions of the techniques that will be at the forefront of future advances. Ongoing and future work will contribute to a more complete understanding of the lifecycles of retroviruses and RNA viruses and potentially lead to novel antiviral strategies.


RNA Biology | 2018

Quality control by trans-editing factor prevents global mistranslation of non-protein amino acid α-aminobutyrate

Jo Marie Bacusmo; Alexandra B. Kuzmishin; William A. Cantara; Yuki Goto; Hiroaki Suga; Karin Musier-Forsyth

ABSTRACT Accuracy in protein biosynthesis is maintained through multiple pathways, with a critical checkpoint occurring at the tRNA aminoacylation step catalyzed by aminoacyl-tRNA synthetases (ARSs). In addition to the editing functions inherent to some synthetases, single-domain trans-editing factors, which are structurally homologous to ARS editing domains, have evolved as alternative mechanisms to correct mistakes in aminoacyl-tRNA synthesis. To date, ARS-like trans-editing domains have been shown to act on specific tRNAs that are mischarged with genetically encoded amino acids. However, structurally related non-protein amino acids are ubiquitous in cells and threaten the proteome. Here, we show that a previously uncharacterized homolog of the bacterial prolyl-tRNA synthetase (ProRS) editing domain edits a known ProRS aminoacylation error, Ala-tRNAPro, but displays even more robust editing of tRNAs misaminoacylated with the non-protein amino acid α-aminobutyrate (2-aminobutyrate, Abu) in vitro and in vivo. Our results indicate that editing by trans-editing domains such as ProXp-x studied here may offer advantages to cells, especially under environmental conditions where concentrations of non-protein amino acids may challenge the substrate specificity of ARSs.


Methods | 2017

Analysis of RNA structure using small-angle X-ray scattering

William A. Cantara; Erik D. Olson; Karin Musier-Forsyth

In addition to their role in correctly attaching specific amino acids to cognate tRNAs, aminoacyl-tRNA synthetases (aaRS) have been found to possess many alternative functions and often bind to and act on other nucleic acids. In contrast to the well-defined 3D structure of tRNA, the structures of many of the other RNAs recognized by aaRSs have not been solved. Despite advances in the use of X-ray crystallography (XRC), nuclear magnetic resonance (NMR) spectroscopy and cryo-electron microscopy (cryo-EM) for structural characterization of biomolecules, significant challenges to solving RNA structures still exist. Recently, small-angle X-ray scattering (SAXS) has been increasingly employed to characterize the 3D structures of RNAs and RNA-protein complexes. SAXS is capable of providing low-resolution tertiary structure information under physiological conditions and with less intensive sample preparation and data analysis requirements than XRC, NMR and cryo-EM. In this article, we describe best practices involved in the process of RNA and RNA-protein sample preparation, SAXS data collection, data analysis, and structural model building.


Viruses | 2015

New Structure Sheds Light on Selective HIV-1 Genomic RNA Packaging

Erik D. Olson; William A. Cantara; Karin Musier-Forsyth

Two copies of unspliced human immunodeficiency virus (HIV)-1 genomic RNA (gRNA) are preferentially selected for packaging by the group-specific antigen (Gag) polyprotein into progeny virions as a dimer during the late stages of the viral lifecycle. Elucidating the RNA features responsible for selective recognition of the full-length gRNA in the presence of an abundance of other cellular RNAs and spliced viral RNAs remains an area of intense research. The recent nuclear magnetic resonance (NMR) structure by Keane et al. [1] expands upon previous efforts to determine the conformation of the HIV-1 RNA packaging signal. The data support a secondary structure wherein sequences that constitute the major splice donor site are sequestered through base pairing, and a tertiary structure that adopts a tandem 3-way junction motif that exposes the dimerization initiation site and unpaired guanosines for specific recognition by Gag. While it remains to be established whether this structure is conserved in the context of larger RNA constructs or in the dimer, this study serves as the basis for characterizing large RNA structures using novel NMR techniques, and as a major advance toward understanding how the HIV-1 gRNA is selectively packaged.

Collaboration


Dive into the William A. Cantara's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul F. Agris

State University of New York System

View shared research outputs
Top Co-Authors

Avatar

Franck A. P. Vendeix

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Estella M. Gustilo

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Rob Kaiser

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Weixin Wu

Ohio State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge