Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Erik D. Olson is active.

Publication


Featured researches published by Erik D. Olson.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Small-angle X-ray scattering-derived structure of the HIV-1 5′ UTR reveals 3D tRNA mimicry

Christopher P. Jones; William A. Cantara; Erik D. Olson; Karin Musier-Forsyth

Significance A highly conserved region of the HIV-1 RNA genome is responsible for regulating numerous steps of the retroviral life cycle, including initiation of reverse transcription. A complete understanding of the mechanisms controlling HIV-1 replication requires structural characterization of this RNA; unfortunately, however, its large size and conformational flexibility makes common methods of solving structures, such as X-ray crystallography and NMR, exceedingly difficult. The present study uses a solution technique, small-angle X-ray scattering coupled with computational molecular modeling, to characterize three ∼100-nucleotide RNAs that play central roles in HIV-1 replication. One of these domains mimics the L-shaped fold of tRNA, providing a structural basis for understanding how this genomic RNA coordinates interactions with a tRNA-binding host factor to facilitate initiation of reverse transcription. The most conserved region of the HIV type 1 (HIV-1) genome, the ∼335-nt 5′ UTR, is characterized by functional stem loop domains responsible for regulating the viral life cycle. Despite the indispensable nature of this region of the genome in HIV-1 replication, 3D structures of multihairpin domains of the 5′ UTR remain unknown. Using small-angle X-ray scattering and molecular dynamics simulations, we generated structural models of the transactivation (TAR)/polyadenylation (polyA), primer-binding site (PBS), and Psi-packaging domains. TAR and polyA form extended, coaxially stacked hairpins, consistent with their high stability and contribution to the pausing of reverse transcription. The Psi domain is extended, with each stem loop exposed for interactions with binding partners. The PBS domain adopts a bent conformation resembling the shape of a tRNA in apo and primer-annealed states. These results provide a structural basis for understanding several key molecular mechanisms underlying HIV-1 replication.


Virus Research | 2014

Progress and outlook in structural biology of large viral RNAs

William A. Cantara; Erik D. Olson; Karin Musier-Forsyth

Abstract The field of viral molecular biology has reached a precipice for which pioneering studies on the structure of viral RNAs are beginning to bridge the gap. It has become clear that viral genomic RNAs are not simply carriers of hereditary information, but rather are active players in many critical stages during replication. Indeed, functions such as cap-independent translation initiation mechanisms are, in some cases, primarily driven by RNA structural determinants. Other stages including reverse transcription initiation in retroviruses, nuclear export and viral packaging are specifically dependent on the proper 3-dimensional folding of multiple RNA domains to recruit necessary viral and host factors required for activity. Furthermore, a large-scale conformational change within the 5′-untranslated region of HIV-1 has been proposed to regulate the temporal switch between viral protein synthesis and packaging. These RNA-dependent functions are necessary for replication of many human disease-causing viruses such as severe acute respiratory syndrome (SARS)-associated coronavirus, West Nile virus, and HIV-1. The potential for antiviral development is currently hindered by a poor understanding of RNA-driven molecular mechanisms, resulting from a lack of structural information on large RNAs and ribonucleoprotein complexes. Herein, we describe the recent progress that has been made on characterizing these large RNAs and provide brief descriptions of the techniques that will be at the forefront of future advances. Ongoing and future work will contribute to a more complete understanding of the lifecycles of retroviruses and RNA viruses and potentially lead to novel antiviral strategies.


Nucleic Acids Research | 2016

Identification of distinct biological functions for four 3′-5′ RNA polymerases

Yicheng Long; Maria G. Abad; Erik D. Olson; Elisabeth Y. Carrillo; Jane E. Jackman

The superfamily of 3′-5′ polymerases synthesize RNA in the opposite direction to all other DNA/RNA polymerases, and its members include eukaryotic tRNAHis guanylyltransferase (Thg1), as well as Thg1-like proteins (TLPs) of unknown function that are broadly distributed, with family members in all three domains of life. Dictyostelium discoideum encodes one Thg1 and three TLPs (DdiTLP2, DdiTLP3 and DdiTLP4). Here, we demonstrate that depletion of each of the genes results in a significant growth defect, and that each protein catalyzes a unique biological reaction, taking advantage of specialized biochemical properties. DdiTLP2 catalyzes a mitochondria-specific tRNAHis maturation reaction, which is distinct from the tRNAHis maturation reaction typically catalyzed by Thg1 enzymes on cytosolic tRNA. DdiTLP3 catalyzes tRNA repair during mitochondrial tRNA 5′-editing in vivo and in vitro, establishing template-dependent 3′-5′ polymerase activity of TLPs as a bona fide biological activity for the first time since its unexpected discovery more than a decade ago. DdiTLP4 is cytosolic and, surprisingly, catalyzes robust 3′-5′ polymerase activity on non-tRNA substrates, strongly implying further roles for TLP 3′-5′ polymerases in eukaryotes.


Methods | 2017

Analysis of RNA structure using small-angle X-ray scattering

William A. Cantara; Erik D. Olson; Karin Musier-Forsyth

In addition to their role in correctly attaching specific amino acids to cognate tRNAs, aminoacyl-tRNA synthetases (aaRS) have been found to possess many alternative functions and often bind to and act on other nucleic acids. In contrast to the well-defined 3D structure of tRNA, the structures of many of the other RNAs recognized by aaRSs have not been solved. Despite advances in the use of X-ray crystallography (XRC), nuclear magnetic resonance (NMR) spectroscopy and cryo-electron microscopy (cryo-EM) for structural characterization of biomolecules, significant challenges to solving RNA structures still exist. Recently, small-angle X-ray scattering (SAXS) has been increasingly employed to characterize the 3D structures of RNAs and RNA-protein complexes. SAXS is capable of providing low-resolution tertiary structure information under physiological conditions and with less intensive sample preparation and data analysis requirements than XRC, NMR and cryo-EM. In this article, we describe best practices involved in the process of RNA and RNA-protein sample preparation, SAXS data collection, data analysis, and structural model building.


Retrovirology | 2016

Mechanistic differences between HIV-1 and SIV nucleocapsid proteins and cross-species HIV-1 genomic RNA recognition

Klara Post; Erik D. Olson; M. Nabuan Naufer; Robert J. Gorelick; Ioulia Rouzina; Mark C. Williams; Karin Musier-Forsyth; Judith G. Levin

BackgroundThe nucleocapsid (NC) domain of HIV-1 Gag is responsible for specific recognition and packaging of genomic RNA (gRNA) into new viral particles. This occurs through specific interactions between the Gag NC domain and the Psi packaging signal in gRNA. In addition to this critical function, NC proteins are also nucleic acid (NA) chaperone proteins that facilitate NA rearrangements during reverse transcription. Although the interaction with Psi and chaperone activity of HIV-1 NC have been well characterized in vitro, little is known about simian immunodeficiency virus (SIV) NC. Non-human primates are frequently used as a platform to study retroviral infection in vivo; thus, it is important to understand underlying mechanistic differences between HIV-1 and SIV NC.ResultsHere, we characterize SIV NC chaperone activity for the first time. Only modest differences are observed in the ability of SIV NC to facilitate reactions that mimic the minus-strand annealing and transfer steps of reverse transcription relative to HIV-1 NC, with the latter displaying slightly higher strand transfer and annealing rates. Quantitative single molecule DNA stretching studies and dynamic light scattering experiments reveal that these differences are due to significantly increased DNA compaction energy and higher aggregation capability of HIV-1 NC relative to the SIV protein. Using salt-titration binding assays, we find that both proteins are strikingly similar in their ability to specifically interact with HIV-1 Psi RNA. In contrast, they do not demonstrate specific binding to an RNA derived from the putative SIV packaging signal.ConclusionsBased on these studies, we conclude that (1) HIV-1 NC is a slightly more efficient NA chaperone protein than SIV NC, (2) mechanistic differences between the NA interactions of highly similar retroviral NC proteins are revealed by quantitative single molecule DNA stretching, and (3) SIV NC demonstrates cross-species recognition of the HIV-1 Psi RNA packaging signal.


Viruses | 2015

New Structure Sheds Light on Selective HIV-1 Genomic RNA Packaging

Erik D. Olson; William A. Cantara; Karin Musier-Forsyth

Two copies of unspliced human immunodeficiency virus (HIV)-1 genomic RNA (gRNA) are preferentially selected for packaging by the group-specific antigen (Gag) polyprotein into progeny virions as a dimer during the late stages of the viral lifecycle. Elucidating the RNA features responsible for selective recognition of the full-length gRNA in the presence of an abundance of other cellular RNAs and spliced viral RNAs remains an area of intense research. The recent nuclear magnetic resonance (NMR) structure by Keane et al. [1] expands upon previous efforts to determine the conformation of the HIV-1 RNA packaging signal. The data support a secondary structure wherein sequences that constitute the major splice donor site are sequestered through base pairing, and a tertiary structure that adopts a tandem 3-way junction motif that exposes the dimerization initiation site and unpaired guanosines for specific recognition by Gag. While it remains to be established whether this structure is conserved in the context of larger RNA constructs or in the dimer, this study serves as the basis for characterizing large RNA structures using novel NMR techniques, and as a major advance toward understanding how the HIV-1 gRNA is selectively packaged.


Seminars in Cell & Developmental Biology | 2018

Retroviral Gag protein–RNA interactions: Implications for specific genomic RNA packaging and virion assembly

Erik D. Olson; Karin Musier-Forsyth

Retroviral Gag proteins are responsible for coordinating many aspects of virion assembly. Gag possesses two distinct nucleic acid binding domains, matrix (MA) and nucleocapsid (NC). One of the critical functions of Gag is to specifically recognize, bind, and package the retroviral genomic RNA (gRNA) into assembling virions. Gag interactions with cellular RNAs have also been shown to regulate aspects of assembly. Recent results have shed light on the role of MA and NC domain interactions with nucleic acids, and how they jointly function to ensure packaging of the retroviral gRNA. Here, we will review the literature regarding RNA interactions with NC, MA, as well as overall mechanisms employed by Gag to interact with RNA. The discussion focuses on human immunodeficiency virus type-1, but other retroviruses will also be discussed. A model is presented combining all of the available data summarizing the various factors and layers of selection Gag employs to ensure specific gRNA packaging and correct virion assembly.


Viruses | 2016

Functional Equivalence of Retroviral MA Domains in Facilitating Psi RNA Binding Specificity by Gag

Tiffiny Rye-McCurdy; Erik D. Olson; Shuohui Liu; Christiana Binkley; Joshua Paolo Reyes; Brian R. Thompson; John M. Flanagan; Leslie J. Parent; Karin Musier-Forsyth


RNA | 2017

Inhibition of HIV-1 Gag-membrane interactions by specific RNAs

Gabrielle C. Todd; Alice A. Duchon; Jingga Inlora; Erik D. Olson; Karin Musier-Forsyth; Akira Ono


RNA | 2017

Conservation of tRNA mimicry in the 5′-untranslated region of distinct HIV-1 subtypes

Roopa Comandur; Erik D. Olson; Karin Musier-Forsyth

Collaboration


Dive into the Erik D. Olson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leslie J. Parent

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Akira Ono

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge