Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where William A. Gaarde is active.

Publication


Featured researches published by William A. Gaarde.


Nature | 2001

Initiation of a G2/M checkpoint after ultraviolet radiation requires p38 kinase

Dmitry V. Bulavin; Yuichiro Higashimoto; Ian Popoff; William A. Gaarde; Venkatesha Basrur; Olga Potapova; Ettore Appella; Albert J. Fornace

Response to genotoxic stress can be considered as a multistage process involving initiation of cell-cycle arrest and maintenance of arrest during DNA repair. Although maintenance of G2/M checkpoints is known to involve Chk1, Chk2/Rad53 and upstream components, the mechanisms involved in its initiation are less well defined. Here we report that p38 kinase has a critical role in the initiation of a G2 delay after ultraviolet radiation. Inhibition of p38 blocks the rapid initiation of this checkpoint in both human and murine cells after ultraviolet radiation. In vitro, p38 binds and phosphorylates Cdc25B at serines 309 and 361, and Cdc25C at serine 216; phosphorylation of these residues is required for binding to 14-3-3 proteins. In vivo, inhibition of p38 prevents both phosphorylation of Cdc25B at serine 309 and 14-3-3 binding after ultraviolet radiation, and mutation of this site is sufficient to inhibit the checkpoint initiation. In contrast, in vivo Cdc25C binding to 14-3-3 is not affected by p38 inhibition after ultraviolet radiation. We propose that regulation of Cdc25B phosphorylation by p38 is a critical event for initiating the G2/M checkpoint after ultraviolet radiation.


Journal of Biological Chemistry | 2008

Role of JNK Translocation to Mitochondria Leading to Inhibition of Mitochondria Bioenergetics in Acetaminophen-induced Liver Injury

Naoko Hanawa; Mie Shinohara; Behnam Saberi; William A. Gaarde; Derick Han; Neil Kaplowitz

Previously, we demonstrated JNK plays a central role in acetaminophen (APAP)-induced liver injury (Gunawan, B. K., Liu, Z. X., Han, D., Hanawa, N., Gaarde, W. A., and Kaplowitz, N. (2006) Gastroenterology 131, 165–178). In this study, we examine the mechanism involved in activating JNK and explore the downstream targets of JNK important in promoting APAP-induced liver injury in vivo. JNK inhibitor (SP600125) was observed to significantly protect against APAP-induced liver injury. Increased mitochondria-derived reactive oxygen species were implicated in APAP-induced JNK activation based on the following: 1) mitochondrial GSH depletion (maximal at 2 h) caused increased H2O2 release from mitochondria, which preceded JNK activation (maximal at 4 h); 2) treatment of isolated hepatocytes with H2O2 or inhibitors (e.g. antimycin) that cause increased H2O2 release from mitochondria-activated JNK. An important downstream target of JNK following activation was mitochondria based on the following: 1) JNK translocated to mitochondria following activation; 2) JNK inhibitor treatment partially protected against a decline in mitochondria respiration caused by APAP treatment; and 3) addition of purified active JNK to mitochondria isolated from mice treated with APAP plus JNK inhibitor (mitochondria with severe GSH depletion, covalent binding) directly inhibited respiration. Cyclosporin A blocked the inhibitory effect of JNK on mitochondria respiration, suggesting JNK was directly inducing mitochondrial permeability transition in isolated mitochondria from mice treated with APAP plus JNK inhibitor. Addition of JNK to mitochondria isolated from control mice did not affect respiration. Our results suggests that APAP-induced liver injury involves JNK activation, due to increased reactive oxygen species generated by GSH-depleted mitochondria, and translocation of activated JNK to mitochondria where JNK induces mitochondrial permeability transition and inhibits mitochondria bioenergetics.


Molecular and Cellular Biology | 2001

Jun NH2-Terminal Kinase Phosphorylation of p53 on Thr-81 Is Important for p53 Stabilization and Transcriptional Activities in Response to Stress

Thomas Buschmann; Olga Potapova; Anat Bar-Shira; Vladimir N. Ivanov; Serge Y. Fuchs; Scott Henderson; Victor A. Fried; Toshinari Minamoto; Dania Alarcon-Vargas; Matthew R. Pincus; William A. Gaarde; Nikki J. Holbrook; Yosef Shiloh; Ze'ev Ronai

ABSTRACT The p53 tumor suppressor protein plays a key role in the regulation of stress-mediated growth arrest and apoptosis. Stress-induced phosphorylation of p53 tightly regulates its stability and transcriptional activities. Mass spectrometry analysis of p53 phosphorylated in 293T cells by active Jun NH2-terminal kinase (JNK) identified T81 as the JNK phosphorylation site. JNK phosphorylated p53 at T81 in response to DNA damage and stress-inducing agents, as determined by phospho-specific antibodies to T81. Unlike wild-type p53, in response to JNK stimuli p53 mutated on T81 (T81A) did not exhibit increased expression or concomitant activation of transcriptional activity, growth inhibition, and apoptosis. Forced expression of MKP5, a JNK phosphatase, in JNK kinase-expressing cells decreased T81 phosphorylation while reducing p53 transcriptional activity and p53-mediated apoptosis. Similarly transfection of antisense JNK 1 and -2 decreased T81 phosphorylation in response to UV irradiation. More than 180 human tumors have been reported to contain p53 with mutations within the region that encompasses T81 and the JNK binding site (amino acids 81 to 116). Our studies identify an additional mechanism for the regulation of p53 stability and functional activities in response to stress.


Hepatology | 2009

Differential effects of JNK1 and JNK2 inhibition on murine steatohepatitis and insulin resistance.

Rajat Singh; Yongjun Wang; Youqing Xiang; Kathryn E. Tanaka; William A. Gaarde; Mark J. Czaja

Activation of c‐Jun N‐terminal kinase (JNK) has been implicated as a mechanism in the development of steatohepatitis. This finding, together with the reported role of JNK signaling in the development of obesity and insulin resistance, two components of the metabolic syndrome and predisposing factors for fatty liver disease, suggests that JNK may be a central mediator of the metabolic syndrome and an important therapeutic target in steatohepatitis. To define the isoform‐specific functions of JNK in steatohepatitis associated with obesity and insulin resistance, the effects of JNK1 or JNK2 ablation were determined in developing and established steatohepatitis induced by a high‐fat diet (HFD). HFD‐fed jnk1 null mice failed to develop excessive weight gain, insulin resistance, or steatohepatitis. In contrast, jnk2−/− mice fed a HFD were obese and insulin‐resistant, similar to wild‐type mice, and had increased liver injury. In mice with established steatohepatitis, an antisense oligonucleotide knockdown of jnk1 decreased the amount of steatohepatitis in concert with a normalization of insulin sensitivity. Knockdown of jnk2 improved insulin sensitivity but had no effect on hepatic steatosis and markedly increased liver injury. A jnk2 knockdown increased hepatic expression of the proapoptotic Bcl‐2 family members Bim and Bax and the increase in liver injury resulted in part from a Bim‐dependent activation of the mitochondrial death pathway. Conclusion: JNK1 and JNK2 both mediate insulin resistance in HFD‐fed mice, but the JNK isoforms have distinct effects on steatohepatitis, with JNK1 promoting steatosis and hepatitis and JNK2 inhibiting hepatocyte cell death by blocking the mitochondrial death pathway. (HEPATOLOGY > 2009;49:87‐96.)


Biochemical Pharmacology | 1997

Antifibrotic effect of decorin in a bleomycin hamster model of lung fibrosis

Shri N. Giri; Dallas M. Hyde; Ruedi K. Braun; William A. Gaarde; John R. Harper; Michael D. Pierschbacher

We reported previously that treatment with antibody to transforming growth factor-beta (TGF-beta) caused a marked attenuation of bleomycin (BL)-induced lung fibrosis (LF) in mice. Decorin (DC), a proteoglycan, binds TGF-beta and thereby down-regulates all of its biological activities. In the present study, we evaluated the antifibrotic potential of DC in a three-dose BL-hamster model of lung fibrosis. Hamsters were placed in the following groups: (1) saline (SA) + phosphate-buffered saline (PBS) (SA + PBS); (2) SA + DC; (3) BL + PBS; and (4) BL + DC. Under pentobarbital anesthesia, SA (4 mL/kg) or BL was instilled intratracheally in three consecutive doses (2.5, 2.0, 1.5 units/kg/4 mL) at weekly intervals. DC (1 mg/mL) or PBS was instilled intratracheally in 0.4 mL/hamster on days 3 and 5 following instillation of each dose of SA or BL. In week 4, hamsters received three doses of either DC or PBS every other day. The hamsters were killed at 30 days following the first instillation, and their lungs were appropriately processed. Lung hydroxyproline levels in SA + PBS, SA + DC, BL + PBS, and BL + DC groups were 965, 829, 1854, and 1387 microg/lung, respectively. Prolyl hydroxylase activities were 103, 289, and 193% of SA + PBS control in SA + DC, BL + PBS, and BL + DC groups, respectively. The myeloperoxidase activities in the corresponding groups were 222, 890, and 274% of control (0.525 units/lung). Intratracheal instillation of BL caused significant increases in these biochemical markers, and instillation of DC diminished these increases in the BL + DC group. DC treatment also caused a significant reduction in the infiltration of neutrophils in the bronchoalveolar lavage fluid (BALF) of hamsters in the BL + DC group. However, DC treatment had little effect on BL-induced increases in lung superoxide dismutase activity and lipid peroxidation and leakage of plasma proteins in the BALF of the BL + DC group. Hamsters in the BL + PBS group showed severe multifocal fibrosis and accumulation of mononuclear inflammatory cells and granulocytes. In contrast, hamsters in the BL + DC group showed mild multifocal septal thickening with aggregations of mononuclear inflammatory cells. Hamsters in both control groups (SA + PBS and SA + DC) showed normal lung structure. Frozen lung sections following immunohistochemical staining revealed an intense staining for EDA-fibronectin and collagen type I in the BL + PBS group as compared with all other groups. It was concluded that DC potentially offers a novel pharmacological intervention that may be useful in treating pulmonary fibrosis.


Molecular and Cellular Biology | 2000

Inhibition of c-Jun N-Terminal Kinase 2 Expression Suppresses Growth and Induces Apoptosis of Human Tumor Cells in a p53-Dependent Manner

Olga Potapova; Myriam Gorospe; Ryan H. Dougherty; Nicholas M. Dean; William A. Gaarde; Nikki J. Holbrook

ABSTRACT c-Jun N-terminal kinase (JNK) plays a critical role in coordinating the cellular response to stress and has been implicated in regulating cell growth and transformation. To investigate the growth-regulatory functions of JNK1 and JNK2, we used specific antisense oligonucleotides (AS) to inhibit their expression. A survey of several human tumor cell lines revealed that JNKAS treatment markedly inhibited the growth of cells with mutant p53 status but not that of cells with normal p53 function. To further examine the influence of p53 on cell sensitivity to JNKAS treatment, we compared the responsiveness of RKO, MCF-7, and HCT116 cells with normal p53 function to that of RKO E6, MCF-7 E6, and HCT116 p53−/−, which were rendered p53 deficient by different methods. Inhibition of JNK2 (and to a lesser extent JNK1) expression dramatically reduced the growth of p53-deficient cells but not that of their normal counterparts. JNK2AS-induced growth inhibition was correlated with significant apoptosis. JNK2AS treatment induced the expression of the cyclin-dependent kinase inhibitor p21 Cip1/Waf1 in parental MCF-7, RKO, and HCT116 cells but not in the p53-deficient derivatives. That p21 Cip1/Waf1 expression contributes to the survival of JNK2AS-treated cells was supported by additional experiments demonstrating that p21 Cip1/Waf1 deficiency in HCT116 cells also results in heightened sensitivity to JNKAS treatment. Our results indicate that perturbation of JNK2 expression adversely affects the growth of otherwise nonstressed cells. p53 and its downstream effector p21 Cip1/Waf1 are important in counteracting these detrimental effects and promoting cell survival.


Journal of Immunology | 2006

Ezrin/Radixin/Moesin Proteins Are Phosphorylated by TNF-α and Modulate Permeability Increases in Human Pulmonary Microvascular Endothelial Cells

Mc Kenzie Koss; Gordon R. Pfeiffer; Ying Wang; Sharon T. Thomas; Michael Yerukhimovich; William A. Gaarde; Claire M. Doerschuk; Qin Wang

Endothelial cells (ECs) respond to TNF-α by altering their F-actin cytoskeleton and junctional permeability through mechanisms that include protein kinase C (PKC) and p38 MAPK. Ezrin, radixin, and moesin (ERM) regulate many cell processes that often require a conformational change of these proteins as a result of phosphorylation on a conserved threonine residue near the C terminus. This study tested the hypothesis that ERM proteins are phosphorylated on this critical threonine residue through TNF-α-induced activation of PKC and p38 and modulate permeability increases in pulmonary microvascular ECs. TNF-α induced ERM phosphorylation on the threonine residue that required activation of p38, PKC isoforms, and phosphatidylinositol-4-phosphate 5-kinase Iα, a major enzyme generating phosphatidylinositol 4,5-bisphosphate, and phosphorylated ERM were prominently localized at the EC periphery. TNF-α-induced ERM phosphorylation was accompanied by cytoskeletal changes, paracellular gap formation, and increased permeability to fluxes of dextran and albumin. These changes required activation of p38 and PKC and were completely prevented by inhibition of ERM protein expression using small interfering RNA. Thus, ERM proteins are phosphorylated through p38 and PKC-dependent mechanisms and modulate TNF-α-induced increases in endothelial permeability. Phosphorylation of ERM likely plays important roles in EC responses to TNF-α by modulating the F-actin cytoskeleton, adhesion molecules, and signaling events.


Gastroenterology | 2012

Role of Differentiation of Liver Sinusoidal Endothelial Cells in Progression and Regression of Hepatic Fibrosis in Rats

Guanhua Xie; Xiangdong Wang; Lei Wang; Lin Wang; Roscoe Atkinson; Gary Kanel; William A. Gaarde; Laurie D. DeLeve

BACKGROUND & AIMS Capillarization, characterized by loss of differentiation of liver sinusoidal endothelial cells (LSECs), precedes the onset of hepatic fibrosis. We investigated whether restoration of LSEC differentiation would normalize crosstalk with activated hepatic stellate cells (HSC) and thereby promote quiescence of HSC and regression of fibrosis. METHODS Rat LSECs were cultured with inhibitors and/or agonists and examined by scanning electron microscopy for fenestrae in sieve plates. Cirrhosis was induced in rats using thioacetamide, followed by administration of BAY 60-2770, an activator of soluble guanylate cyclase (sGC). Fibrosis was assessed by Sirius red staining; expression of α-smooth muscle actin was measured by immunoblot analysis. RESULTS Maintenance of LSEC differentiation requires vascular endothelial growth factor-A stimulation of nitric oxide-dependent signaling (via sGC and cyclic guanosine monophosphate) and nitric oxide-independent signaling. In rats with thioacetamide-induced cirrhosis, BAY 60-2770 accelerated the complete reversal of capillarization (restored differentiation of LSECs) without directly affecting activation of HSCs or fibrosis. Restoration of differentiation to LSECs led to quiescence of HSCs and regression of fibrosis in the absence of further exposure to BAY 60-2770. Activation of sGC with BAY 60-2770 prevented progression of cirrhosis, despite continued administration of thioacetamide. CONCLUSIONS The state of LSEC differentiation plays a pivotal role in HSC activation and the fibrotic process.


Journal of Biological Chemistry | 2010

Silencing glycogen synthase kinase-3β inhibits acetaminophen hepatotoxicity and attenuates JNK activation and loss of glutamate cysteine ligase and myeloid cell leukemia sequence 1

Mie Shinohara; Maria D. Ybanez; Sanda Win; Tin Aung Than; Shilpa Jain; William A. Gaarde; Derick Han; Neil Kaplowitz

Previously we demonstrated that c-Jun N-terminal kinase (JNK) plays a central role in acetaminophen (APAP)-induced liver injury. In the current work, we examined other possible signaling pathways that may also contribute to APAP hepatotoxicity. APAP treatment to mice caused glycogen synthase kinase-3β (GSK-3β) activation and translocation to mitochondria during the initial phase of APAP-induced liver injury (∼1 h). The silencing of GSK-3β, but not Akt-2 (protein kinase B) or glycogen synthase kinase-3α (GSK-3α), using antisense significantly protected mice from APAP-induced liver injury. The silencing of GSK-3β affected several key pathways important in conferring protection against APAP-induced liver injury. APAP treatment was observed to promote the loss of glutamate cysteine ligase (GCL, rate-limiting enzyme in GSH synthesis) in liver. The silencing of GSK-3β decreased the loss of hepatic GCL, and promoted greater GSH recovery in liver following APAP treatment. Silencing JNK1 and -2 also prevented the loss of GCL. APAP treatment also resulted in GSK-3β translocation to mitochondria and the degradation of myeloid cell leukemia sequence 1 (Mcl-1) in mitochondrial membranes in liver. The silencing of GSK-3β reduced Mcl-1 degradation caused by APAP treatment. The silencing of GSK-3β also resulted in an inhibition of the early phase (0–2 h), and blunted the late phase (after 4 h) of JNK activation and translocation to mitochondria in liver following APAP treatment. Taken together our results suggest that activation of GSK-3β is a key mediator of the initial phase of APAP-induced liver injury through modulating GCL and Mcl-1 degradation, as well as JNK activation in liver.


Trends in Pharmacological Sciences | 2000

Elucidating cell signaling mechanisms using antisense technology

Erich Koller; William A. Gaarde; Brett P. Monia

Many diseases result from defects in cell signaling. Achieving an in-depth understanding of the complex mechanisms by which cells transduce extracellular signals into cellular responses in both normal and diseased systems is a crucial step in the discovery of more effective drugs to treat human diseases. Traditional approaches for studying cell signaling have some limitations. Antisense oligonucleotides represent a novel approach for studying signal transduction processes that offers significant advantages in terms of specificity and versatility. This article reviews the opportunities that antisense oligonucleotides offer for the study of signal transduction pathways and identification of inhibitors of these pathways for drug development.

Collaboration


Dive into the William A. Gaarde's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Derick Han

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Neil Kaplowitz

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Behnam Saberi

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Maria D. Ybanez

University of Southern California

View shared research outputs
Researchain Logo
Decentralizing Knowledge