Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where William A. Molander is active.

Publication


Featured researches published by William A. Molander.


Nuclear Fusion | 2004

An overview of LLNL high-energy short-pulse technology for advanced radiography of laser fusion experiments

C. P. J. Barty; M.H. Key; J.A. Britten; R. Beach; G. Beer; C. Brown; S. Bryan; John A. Caird; T. Carlson; John K. Crane; Jay W. Dawson; Alvin C. Erlandson; D. N. Fittinghoff; Mark Hermann; C. Hoaglan; A. Iyer; L. Jones; Igor Jovanovic; Aleksey M. Komashko; O. L. Landen; Zhi M. Liao; William A. Molander; S. Mitchell; E. I. Moses; Norman D. Nielsen; H.-H. Nguyen; J. Nissen; Stephen A. Payne; Deanna M. Pennington; L. Risinger

The technical challenges and motivations for high-energy, short-pulse generation with the National Ignition Facility (NIF) and possibly other large-scale Nd : glass lasers are reviewed. High-energy short-pulse generation (multi-kilojoule, picosecond pulses) will be possible via the adaptation of chirped pulse amplification laser techniques on NIF. Development of metre-scale, high-efficiency, high-damage-threshold final optics is a key technical challenge. In addition, deployment of high energy petawatt (HEPW) pulses on NIF is constrained by existing laser infrastructure and requires new, compact compressor designs and short-pulse, fibre-based, seed-laser systems. The key motivations for HEPW pulses on NIF is briefly outlined and includes high-energy, x-ray radiography, proton beam radiography, proton isochoric heating and tests of the fast ignitor concept for inertial confinement fusion.


XXXV Annual Symposium on Optical Materials for High Power Lasers: Boulder Damage Symposium | 2001

Growth of laser-initiated damage in fused silica at 351 nm

Mary A. Norton; Lawrence W. Hrubesh; Zhouling Wu; Eugene E. Donohue; Michael D. Feit; Mark R. Kozlowski; David Milam; Kurt P. Neeb; William A. Molander; Alexander M. Rubenchik; Walter D. Sell; Paul J. Wegner

The effective lifetime of optics in the UV is limited both by laser induced damage and the subsequent growth of laser initiated damage sites. We have measured the growth rate of laser induced damage in fused silica in both air and vacuum. The data shows exponential growth in the lateral size of the damage site with shot number above threshold fluence. The concurrent growth in depth follows a linear dependence with shot number. The size of the initial damage influences the threshold for growth; the morphology of the initial site depends strongly on the initiating fluence. We have found only a weak dependence on pulse length for growth rate. Low fluence conditioning in air may delay the onset of growth. Most of the work has been on bare substrates but the presence of a sol-gel AR coating has no significant effect.


Journal of The Optical Society of America B-optical Physics | 2008

High-average-power femto-petawatt laser pumped by the Mercury laser facility

A. Bayramian; James P. Armstrong; Glenn Beer; R. Campbell; Bruce H. T. Chai; Robert R. Cross; Alvin C. Erlandson; Yting Fei; Barry L. Freitas; Robert Kent; Joseph A. Menapace; William A. Molander; Kathleen I. Schaffers; C. W. Siders; S. Sutton; John B. Tassano; Steve Telford; Christopher A. Ebbers; John A. Caird; C. P. J. Barty

The Mercury laser system is a diode-pumped solid-state laser that has demonstrated over 60 J at a repetition rate of 10 Hz (600 W) of near-infrared light (1047 nm). Using a yttrium calcium oxyborate frequency converter, we have demonstrated 31.7 J/pulse at 10 Hz of second harmonic generation. The frequency converted Mercury laser system will pump a high-average-power Ti:sapphire chirped pulse amplifier system that will produce a compressed peak power > 1 PW and peak irradiance > 1023W/cm2.


Fusion Science and Technology | 2011

Compact, Efficient Laser Systems Required for Laser Inertial Fusion Energy

A. Bayramian; S. Aceves; T. Anklam; K. Baker; E. Bliss; C. Boley; A. Bullington; John A. Caird; D. Chen; R. Deri; Mike Dunne; Alvin C. Erlandson; D. Flowers; Mark A. Henesian; Jeffery F. Latkowski; Kenneth R. Manes; William A. Molander; E. I. Moses; T. Piggott; S. Powers; S. Rana; S. Rodriguez; R. Sawicki; Kathleen I. Schaffers; L. Seppala; M. Spaeth; S. Sutton; S. Telford

Abstract This paper presents our conceptual design for laser drivers used in Laser Inertial Fusion Energy (LIFE) power plants. Although we have used only modest extensions of existing laser technology to ensure near-term feasibility, predicted performance meets or exceeds plant requirements: 2.2 MJ pulse energy produced by 384 beamlines at 16 Hz, with 18% wall-plug efficiency. High reliability and maintainability are achieved by mounting components in compact line-replaceable units that can be removed and replaced rapidly while other beamlines continue to operate, at up to ˜13% above normal energy, to compensate for neighboring beamlines that have failed. Statistical modeling predicts that laser-system availability can be greater than 99% provided that components meet reasonable mean-time-between-failure specifications.


Review of Scientific Instruments | 2004

Precision short-pulse damage test station utilizing optical parametric chirped-pulse amplification

Igor Jovanovic; Curtis G. Brown; Benoit Wattellier; Norman D. Nielsen; William A. Molander; Brent C. Stuart; Deanna M. Pennington; C. P. J. Barty

The next generation of high-energy petawatt (HEPW)-class lasers will utilize multilayer dielectric diffraction gratings for pulse compression, due to their high efficiency and high damage threshold for picosecond pulses. The peak power of HEPW lasers will be determined by the aperture and damage threshold of the final dielectric grating in the pulse compressor and final focusing optics. We have developed a short-pulse damage test station for accurate determination of the damage threshold of the optics used on future HEPW lasers. Our damage test station is based on a highly stable, high-beam-quality optical parametric chirped-pulse amplifier (OPCPA) operating at 1053 nm at a repetition rate of 10 Hz. We present the design of our OPCPA system pumped by a commercial Q-switched pump laser and the results of the full system characterization. Initial short-pulse damage experiments in the far field using our system have been performed.


XXXV Annual Symposium on Optical Materials for High Power Lasers: Boulder Damage Symposium | 2004

Multilayer dielectric gratings for petawatt-class laser systems

Jerald A. Britten; William A. Molander; Aleksey M. Komashko; C. P. J. Barty

Existing Petawatt class lasers today based on Nd:glass architectures operating at nominally 500 J, 0.5 ps use meter-scale aperture, gold-overcoated master photoresist gratings to compress the amplified chirped pulse. Many lasers operating in the >1kJ, >1ps regime are in the planning stages around the world. These will require multilayer dielectric diffraction gratings to handle larger pulse energy than can be accommodated with gold gratings. Models of the electric field distribution in the solid material of these gratings suggest that high aspect-ratio structures used at high incidence angles will have better laser damage resistance. New tooling for transfer etching these submicron-grating patterns and for nondestructive critical-dimension measurement of these features on meter-scale substrates will be described.


Laser-Induced Damage in Optical Materials: 2001 | 2002

Methods for mitigating surface damage growth in NIF final optics

Lawrence W. Hrubesh; Mary A. Norton; William A. Molander; Eugene E. Donohue; Stephen M. Maricle; B. M. Penetrante; Raymond M. Brusasco; Walter Grundler; Jim A. Butler; Jeff Carr; R. Hill; Leslie J. Summers; Michael D. Feit; Alexander M. Rubenchik; Michael H. Key; Paul J. Wegner; Alan K. Burnham; Lloyd A. Hackel; Mark R. Kozlowski

We report a summary of the surface damage, growth mitigation effort at 3(omega) for fused silica optics at LLNL. The objective was to experimentally validate selected methods that could be applied to pre-initiated or retrieved-from- service optics, to stop further damage growth. A specific goal was to obtain sufficient data and information of successful methods for fused silica optics to select a single approach for processing NIF optics. This paper includes the test results and the evaluation thereof, for several mitigation methods for fused silica. The mitigation methods tested in this study are wet chemical etching, cold plasma etching, CO2 laser processing, and micro-flame torch processing. We found that CO2 laser processing produces the most significant and consistent results to halt laser-induced surface damage growth on fused silica. We recorded successful mitigation of the growth of laser-induced surface damage sites as large as 0.5-mm diameter, for 1000 shots at fluences in the range of 8 to 13 J/cm2. We obtained sufficient data for elimination of damage growth using CO2 laser processing on sub-aperture representative optics, to proceed with application to full- scale NIF optics.


Fusion Science and Technology | 2009

ND:GLASS LASER DESIGN FOR LASER ICF FISSION ENERGY (LIFE)

John A. Caird; Vivek Agrawal; A. Bayramian; Ray Beach; J.A. Britten; Diana Chen; Robert R. Cross; Christopher A. Ebbers; Alvin C. Erlandson; Michael D. Feit; Barry L. Freitas; Chuni Ghosh; C. Haefner; Doug Homoelle; Tony Ladran; Jeff Latkowski; William A. Molander; J. R. Murray; Sasha Rubenchik; Kathleen I. Schaffers; Craig W. Siders; Eddy A. Stappaerts; S. Sutton; Steve Telford; John B. Trenholme; Christopher Barty

Abstract We have developed preliminary conceptual laser system designs for the Laser ICF (Inertial Confinement Fusion) Fission Energy (LIFE) application. Our approach leverages experience in high-energy Nd: glass laser technology developed for the National Ignition Facility (NIF)1, along with high-energy-class diode-pumped solid-state laser (HEC-DPSSL) technology developed for the DOE’s High Average Power Laser (HAPL) Program and embodied LLNL’s Mercury laser system.2 We present laser system designs suitable for both indirect-drive, hot spot ignition and indirect-drive, fast ignition targets. Main amplifiers for both systems use laser-diode-pumped Nd:glass slabs oriented at Brewster’s angle, as in NIF, but the slabs are much thinner to allow for cooling by high-velocity helium gas as in the Mercury laser system. We also describe a plan to mass-produce pump-diode lasers to bring diode costs down to the order of


Metal Vapor Laser Technology and Applications | 1989

Measurement Of Ground State Copper Density Using Hook Spectroscopy

William A. Molander

0.01 per Watt of peak output power, as needed to make the LIFE application economically attractive.


Proceedings of SPIE - The International Society for Optical Engineering | 2005

Precision damage tests of multilayer dielectric gratings for high-energy petawatt lasers

Igor Jovanovic; Curtis G. Brown; Brent C. Stuart; William A. Molander; Norman D. Nielsen; Benoit Wattellier; Jerald A. Britten; Deanna M. Pennington; C. P. J. Barty

The density of ground state copper atoms has been measured in an operating large-bore copper laser using hook spectroscopy. In this method, dispersion, due to the copper resonance lines at 327.4 nm and 324.7 nm, is measured by placing the copper laser tube in one arm of a Mach-Zehnder interferometer illuminated by a broad bandwidth UV source. The light source was a Nd:YAG-laser-pumped dye laser which was modified to have a 15 nm bandwidth and then frequency doubled in a 3 mm thick KDP crystal, resulting in a UV beam with an 8 nm bandwidth. The Nd:YAG laser was synchronized with the copper laser, allowing a time resolution of 8 ns. Copper density was measured both as a function of time and as a function of radial position across the bore of the tube. The radial resolution was about 2 mm. The space-dependent data gives information about the gas temperature distribution since the density is inversely proportional to the temperature. The gas temperature distribution found in this way agrees well with the predictions of a simple heat-conduction model which assumes uniform power deposition. The power deposition found in this way was compared to that found by calorimetry.

Collaboration


Dive into the William A. Molander's collaboration.

Top Co-Authors

Avatar

C. P. J. Barty

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

John A. Caird

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

A. Bayramian

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Alvin C. Erlandson

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

S. Sutton

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Kathleen I. Schaffers

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. Telford

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Barry L. Freitas

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Christopher A. Ebbers

Lawrence Livermore National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge