Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where William Birch is active.

Publication


Featured researches published by William Birch.


Stem Cells and Development | 2012

Translating Human Embryonic Stem Cells from 2-Dimensional to 3-Dimensional Cultures in a Defined Medium on Laminin- and Vitronectin-Coated Surfaces

Boon Chin Heng; Jian Li; Allen Chen; Shaul Reuveny; Simon M. Cool; William Birch; Steve Oh

While defining the environment for human embryonic stem cell (hESC) culture on 2-dimensional (2D) surfaces has made rapid progress, the industrial-scale implementation of this technology will benefit from translating this knowledge into a 3-dimensional (3D) system, thus enabling better control, automation, and volumetric scale-up in bioreactors. The current study describes a system with defined conditions that are capable of supporting the long-term 2D culture of hESCs and the transposing of these conditions to 3D microcarrier (MC) cultures. Vitronectin (VN) and laminin (LN) were chosen as matrices for the long-term propagation of hESCs in a defined culture medium (STEMPRO(®)) for conventional 2D culture. Adsorption of these proteins onto 2D tissue culture polystyrene (TCPS) indicated that surface density saturation of 510 and 850 ng/cm(2) for VN and LN, respectively, was attained above 20 μg/mL deposition solution concentration. Adsorption of these proteins onto spherical (97±10 μm), polystyrene MC followed a similar trend and coating surface densities of 450 and 650 ng/cm(2) for VN and LN, respectively, were used to support hESC propagation. The long-term expansion of hESCs was equally successful on TCPS and MC, with consistently high expression (>90%) of pluripotent markers (OCT-4, MAB-84, and TRA-1-60) over 20 passages and maintenance of karyotypic normality. The average fold increase in cell numbers on VN-coated MC per serial passage was 8.5±1.0, which was similar to LN-coated MC (8.5±0.9). Embryoid body differentiation assays and teratoma formation confirmed that hESCs retained the ability to differentiate into lineages of all 3 germ layers, thus demonstrating the first translation to a fully defined MC-based environment for the expansion of hESCs.


Journal of Colloid and Interface Science | 2003

Molecular interactions between DNA and an aminated glass substrate.

Alain Carre; Valerie Lacarriere; William Birch

With the development of DNA arrays, the immobilization of DNA strands onto solid substrates remains an essential research topic. DNA arrays have potential applications in DNA sequencing, mutation detection, and pathogen identification. DNA bound to solid substrates must still be accessible and retain the ability to hybridize with its complementary strands. One technology to produce these arrays involves linking DNA molecule probes to a silanized substrate in microspot patterns and exposing them to a solution of fluorescently labeled samples of DNA targets. The behavior of both the target and probe DNA and their interactions with each other at the substrate surface, particularly with respect to molecular interactions, are poorly understood at the present time. The objective of this work is to model simply the interface interactions between DNA and glass slides modified with an aminosilane (gamma-aminopropyltriethoxysilane, APTS). In aqueous solutions, DNA behaves as a polyacid over a wide range of pH. A glass substrate treated with APTS is positively or negatively charged, depending on the pH. A model of the surface charge of APTS-treated glass has been developed from results of wetting experiments performed at various pH. It has been demonstrated that the surface charge of APTS-treated glass is well described by a model of constant capacitance of the electrical double layer. A good correlation between experimental data on DNA retention at various pHs and the variation of the surface charge of the APTS-treated glass is obtained. This provides an indication of the role of ionic interactions in the adsorption of DNA molecules onto aminated glass slides.


Biomaterials | 2013

Temporal application of topography to increase the rate of neural differentiation from human pluripotent stem cells

Lesley Y. Chan; William Birch; Evelyn K.F. Yim

Human pluripotent stem cells (hPSCs) are a promising cell source for tissue engineering and regenerative medicine, especially in the field of neurobiology. Neural differentiation protocols have been developed to differentiate hPSCs into specific neural cells, but these predominantly rely on biochemical cues. Recently, differentiation protocols have incorporated topographical cues to increase the total neuronal yield. However, the means by which these topographical cues improve neuronal yield remains unknown. In this study, we explored the effect of topography on the neural differentiation of hPSC by quantitatively studying the changes in marker expression at a transcript and protein level. We found that 2 μm gratings increase the rate of neural differentiation, and that an additional culture period of 2 μm gratings in the absence of neurotrophic signals can improve the neural differentiation of hPSCs. We envisage that this work can be incorporated into future differentiation protocols to decrease the differentiation period as well as the biochemical signals added, thus generating hPSC-derived neural cells in a more cost effective and efficient manner.


Polymer Chemistry | 2010

Barnacle repellent nanostructured surfaces formed by the self-assembly of amphiphilic block copolymers.

Beng H. Tan; Hazrat Hussain; Kuan Chun Chaw; Gary H. Dickinson; Chakra S. Gudipati; William Birch; Serena L. M. Teo; Chaobin He; Ye Liu; Thomas P. Davis

Well-defined nanostructured surface with domains of dimension ∼20 nm was formed by the self-assembly of brush-type amphiphilic block copolymers of poly[poly(ethylene glycol)methyl ether methacrylate]-block-poly(2,3,4,5,6-pentafluorostyrene) (P(PEGMA)-b-PPFS) which demonstrate promise in discouraging barnacle settlement as proven using laboratory settlement assays and marine field tests.


Biofouling | 2009

Marine biofouling field tests, settlement assay and footprint micromorphology of cyprid larvae of Balanus amphitrite on model surfaces

In Yee Phang; Kuan Chun Chaw; Sue Sok Hui Choo; Ryan Kok Chuan Kang; Serina Siew Chen Lee; William Birch; Serena Lay Ming Teo; G. Julius Vancso

Atomic force microscopy (AFM), laboratory settlement assays and field tests were used to correlate cyprid footprint (FP) morphology with the behaviour of cyprids on different substrata. AFM imaging under laboratory conditions revealed more porous and larger FPs on glass exposing a CH3-surface than on aminosilane functionalised (NH2-) surfaces. The secreted FP volume was found to be similar on both substrata (2.1–2.6 μm3). Laboratory settlement assays and marine field tests were performed on three substrata, viz. untreated clean glass, NH2-glass, and CH3-glass. The results distinguished settlement preferences for NH2-glass and untreated glass over CH3-terminated surfaces, suggesting that cyprids favour settling on hydrophilic over hydrophobic surfaces. On combining observations from different length scales, it is speculated that the confined FP size on NH2-glass may induce a higher concentration of the settlement inducing protein complex. Settlement may be further facilitated by a stronger adherence of FP adhesives to the NH2-surface via Coulombic interactions.


Advanced Healthcare Materials | 2012

Understanding the Nano-topography Changes and Cellular Influences Resulting from the Surface Adsorption of Human Hair Keratins

Francesca Taraballi; Shuai Wang; Jian Li; Fiona Yann Yann Lee; Subbu S. Venkatraman; William Birch; Swee Hin Teoh; Freddy Yin Chiang Boey; Kee Woei Ng

Recent interest in the use of human hair keratins as a biomaterial has grown, fuelled by improvements in keratin extraction methods and better understanding of keratin bioactivity. The use of keratins as a bioactive coating for in vitro cell culture studies is an attractive proposition. In this light, the surface adsorption of human hair keratins onto tissue culture polystyrene surfaces has been investigated. Keratin density, nano-topography and hydrophobicity of keratin coated surfaces were characterized. To understand the cellular influence of these coated surfaces, murine L929 fibroblasts were cultured on them and evaluated for cytotoxicity, proliferation, metabolic activity and detachment behaviors compared to collagen type 1 coated surfaces. Keratins were deposited up to a density of 650 ng/cm(2) when a coating concentration of 80 μg/ml or higher was used. The surface features formed by adsorbed keratins also changed in a coating concentration dependent manner. These surfaces improved L929 mouse fibroblast adhesion and proliferation in comparison to uncoated and collagen type 1 coated tissue culture polystyrene. Furthermore, the expression of fibronectin was accelerated on surfaces coated with solutions of higher keratin concentrations. These results suggest that human hair keratins can be used as a viable surface coating material to enhance substrate compliance for culturing cells.


Biointerphases | 2010

Impact of vitronectin concentration and surface properties on the stable propagation of human embryonic stem cells

Jian Li; Jo'an Bardy; Lynn Yap; Allen Chen; Nurcombe Victor; Simon M. Cool; Steve Oh; William Birch

The standard method for culturing human embryonic stem cells (hESC) uses supporting feeder layers of cells or an undefined substrate, MatrigelTM, which is a basement membrane extracted from murine sarcoma. For stem cell therapeutic applications, a superior alternative would be a defined, artificial surface that is based on immobilized human plasma vitronectin (VN), which is an adhesion-mediating protein. Therefore, VN adsorbed to diverse polymer surfaces was explored for the continuous propagation of hESC. Cells propagated on VN-coated tissue culture polystyrene (TCPS) are karyotypically normal after >10 passages of continuous culture, and are able to differentiate into embryoid bodies containing all three germ layers. Expansion rates and pluripotent marker expression verified that a minimal VN surface density threshold is required on TCPS. Further exploration of adsorbed VN was conducted on polymer substrates with different properties, ranging from hydrophilic to hydrophobic and including cationic and anionic polyelectrolyte coatings. Despite differing surface properties, these substrates adsorbed VN above the required surface density threshold and were capable of supporting hESC expansion for >10 passages. Correlating wettability of the VN-coated surfaces with the response of cultured hESC, higher cell expansion rates and OCT-4 expression levels were found for VN-coated TCPS, which exhibits a water contact angle close to 65°. Importantly, this simple, defined surface matches the performance of the benchmark Matrigel, which is a hydrogel with highly complex composition.


Cytotherapy | 2016

Biodegradable ECM-coated PCL microcarriers support scalable human early MSC expansion and in vivo bone formation

Asha Shekaran; Alan Lam; Eileen Sim; Lee Jialing; Li Jian; Jessica Toh Pei Wen; Jerry Kok Yen Chan; Mahesh Choolani; Shaul Reuveny; William Birch; Steve Oh

BACKGROUND AIMS Human mesenchymal stromal cells or marrow stromal cells (MSCs) are of great interest for bone healing due to their multi-potency and trophic effects. However, traditional MSC expansion methods using 2-dimensional monolayer (MNL) flasks or cell stacks are limited by labor-intensive handling, lack of scalability, the need for enzymatic cell harvesting and the need for attachment to a scaffold before in vivo delivery. Here, we present a biodegradable microcarrier and MSC bioprocessing system that may overcome the abovementioned challenges. METHODS We cultured human early MSCs (heMSCs) on biodegradable polycaprolactone microcarriers (PCL MCs) coated with extracellular matrix (ECM) and evaluated the in vitro osteogenic differentiation and in vivo bone formation capacity of ECM-coated PCL MC-bound heMSCs compared with conventional MNL-cultured cells. RESULTS We found that heMSCs proliferate well on PCL MCs coated with a fibronectin, poly-l-lysine, and fibronectin (FN+PLL+FN) coating (cPCL MCs). During in vitro osteogenic induction, heMSCs cultured on cPCL MCs displayed a 68% increase in specific calcium deposition compared with cultures on MNL. In a mouse ectopic mineralization model, bone mass was equivalent for MNL-expanded and cPCL MC-bound heMSC implants but higher in both cases when compared with cell-free cPCL MC implants at 16 weeks post-implantation. In summary, compared with MNL cultures, biodegradable MC MSC cultures provide the benefits of large-scale expansion of cells and can be delivered in vivo, thereby eliminating the need for cell harvesting and use of scaffolds for cell delivery. These results highlight the promise of delivering heMSCs cultured on cPCL MCs for bone applications.


Biofouling | 2011

Surface exploration of Amphibalanus amphitrite cyprids on microtextured surfaces.

Kuan Chun Chaw; Gary H. Dickinson; Kai Yang Ang; Jie Deng; William Birch

Microtopography is one of several strategies used by marine organisms to inhibit colonization by fouling organisms. While replicates of natural microtextures discourage settlement, details of larval interactions with the structured surfaces remain scarce. Close-range microscopy was used to quantify the exploration of cyprids of Amphibalanus amphitrite on cylindrical micropillars with heights of 5 and 30 μm and diameters ranging from 5 to 100 μm. While 5 μm-high structures had little impact, 30 μm-high pillars significantly influenced cyprid exploration. An observed step length decrease and step duration increase on 5 μm diameter pillars is attributed to the small dimensions of the voids excluding the cyprids attachment disc and consequently reducing the area of adhesive contact. When exploring larger diameter pillars, cyprids preferred using the voids to form temporary attachment points. This may enhance their resistance to flow. No-choice assay settlement patterns mirrored this exploration behaviour, albeit in a pattern counter to what was predicted.


Developments in Surface Contamination and Cleaning#R##N#Fundamentals and Applied Aspects | 2008

Wettability Techniques to Monitor the Cleanliness of Surfaces

William Birch; Alain Carre; Kashmiri L. Mittal

Publisher Summary In the broad spectrum of contamination control, a major concern is the presence of organic contamination on various inorganic surfaces. In order to control surface contamination of materials, a rapid-detection method is required that does not adversely affect the surface. Wettability measurements provide a convenient and rapid method for probing the outermost surface of a material. The technique is highly surface specific, generally exceeding the sensitivity of electron spectroscopies and is sensitive to a fraction of a monolayer. The most widely used quantitative measure of wettability is the contact angle. When a drop of a liquid with a sufficiently small size is placed on a smooth, flat, homogeneous solid substrate, the drop takes the shape of a spherical cap. The shape of the drop approximates that of a spherical cap when the forces other than the surface tension become negligible. Each solid and liquid (and vapor phase) combination gives rise to a specific degree of wettability. The parameter defining the wettability is the observed contact-angle; the lower the contact angle, the higher the wettability. This angle is measured between a tangent to the liquid surface where it meets the solid substrate and the plane of the solid substrate. It is found that any test of surface cleanliness involving wettability by water cannot be used on metal surfaces that have an indeterminate oxide layer. It is tempting to assume that any clean metal oxide surface would be hydrophilic, but even this rule may have some exceptions.

Collaboration


Dive into the William Birch's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jian Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Li

Agency for Science

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge