Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where William C. Lamanna is active.

Publication


Featured researches published by William C. Lamanna.


Cold Spring Harbor Perspectives in Biology | 2011

Heparan Sulfate Proteoglycans

Stéphane Sarrazin; William C. Lamanna; Jeffrey D. Esko

Heparan sulfate proteoglycans are found at the cell surface and in the extracellular matrix, where they interact with a plethora of ligands. Over the last decade, new insights have emerged regarding the mechanism and biological significance of these interactions. Here, we discuss changing views on the specificity of protein-heparan sulfate binding and the activity of HSPGs as receptors and coreceptors. Although few in number, heparan sulfate proteoglycans have profound effects at the cellular, tissue, and organismal level.


Journal of Biological Chemistry | 2008

Sulf Loss Influences N-, 2-O-, and 6-O-Sulfation of Multiple Heparan Sulfate Proteoglycans and Modulates Fibroblast Growth Factor Signaling

William C. Lamanna; Marc-André Frese; Martina Balleininger; Thomas Dierks

Sulf1 and Sulf2 are two heparan sulfate 6-O-endosulfatases that regulate the activity of multiple growth factors, such as fibroblast growth factor and Wnt, and are essential for mammalian development and survival. In this study, the mammalian Sulfs were functionally characterized using overexpressing cell lines, in vitro enzyme assays, and in vivo Sulf knock-out cell models. Analysis of subcellular Sulf localization revealed significant differences in enzyme secretion and detergent solubility between the human isoforms and their previously characterized quail orthologs. Further, the activity of the Sulfs toward their native heparan sulfate substrates was determined in vitro, demonstrating restricted specificity for S-domain-associated 6S disaccharides and an inability to modify transition zone-associated UA-GlcNAc(6S). Analysis of heparan sulfate composition from different cell surface, shed, glycosylphosphatidylinositol-anchored and extracellular matrix proteoglycan fractions of Sulf knock-out cell lines established differential effects of Sulf1 and/or Sulf2 loss on nonsubstrate N-, 2-O-, and 6-O-sulfate groups. These findings indicate a dynamic influence of Sulf deficiency on the HS biosynthetic machinery. Real time PCR analysis substantiated differential expression of the Hs2st and Hs6st heparan sulfate sulfotransferase enzymes in the Sulf knock-out cell lines. Functionally, the changes in heparan sulfate sulfation resulting from Sulf loss were shown to elicit significant effects on fibroblast growth factor signaling. Taken together, this study implicates that the Sulfs are involved in a potential cellular feed-back mechanism, in which they edit the sulfation of multiple heparan sulfate proteoglycans, thereby regulating cellular signaling and modulating the expression of heparan sulfate biosynthetic enzymes.


Biochemical Journal | 2006

Heparan sulfate 6-O-endosulfatases: discrete in vivo activities and functional co-operativity

William C. Lamanna; Rebecca J. Baldwin; Michael Padva; Ina Kalus; Gerdy B. ten Dam; Toin H. van Kuppevelt; John T. Gallagher; Kurt von Figura; Thomas Dierks; Catherine L. R. Merry

HS (heparan sulfate) is essential for normal embryonic development. This requirement is due to the obligatory role for HS in the signalling pathways of many growth factors and morphogens that bind to sulfated domains in the HS polymer chain. The sulfation patterning of HS is determined by a complex interplay of Golgi-located N- and O-sulfotransferases which sulfate the heparan precursor and cell surface endosulfatases that selectively remove 6-O-sulfates from mature HS chains. In the present study we generated single or double knock-out mice for the two murine endosulfatases mSulf1 and mSulf2. Detailed structural analysis of HS from mSulf1-/- fibroblasts showed a striking increase in 6-O-sulfation, which was not seen in mSulf2-/- HS. Intriguingly, the level of 6-O-sulfation in the double mSulf1-/-/2-/- HS was significantly higher than that observed in the mSulf1-/- counterpart. These data imply that mSulf1 and mSulf2 are functionally co-operative. Unlike their avian orthologues, mammalian Sulf activities are not restricted to the highly sulfated S-domains of HS. Mitogenesis assays with FGF2 (fibroblast growth factor 2) revealed that Sulf activity decreases the activating potential of newly-synthesized HS, suggesting an important role for these enzymes in cell growth regulation in embryonic and adult tissues.


Nature Chemical Biology | 2012

Disease-specific non–reducing end carbohydrate biomarkers for mucopolysaccharidoses

Roger Lawrence; Jillian R. Brown; Kanar Al-Mafraji; William C. Lamanna; James R. Beitel; Geert-Jan Boons; Jeffrey D. Esko; Brett E. Crawford

A significant need exists for improved biomarkers for differential diagnosis, prognosis and monitoring of therapeutic interventions for mucopolysaccharidoses (MPS), inherited metabolic disorders that involve lysosomal storage of glycosaminoglycans. Here, we report a simple reliable method based on the detection of abundant non-reducing ends of the glycosaminoglycans that accumulate in cells, blood, and urine of MPS patients. In this method, glycosaminoglycans were enzymatically depolymerized releasing unique mono-, di-, or trisaccharides from the non-reducing ends of the chains. The composition of the released mono- and oligosaccharides depends on the nature of the lysosomal enzyme deficiency, and therefore they serve as diagnostic biomarkers. Analysis by liquid chromatography/mass spectrometry allowed qualitative and quantitative assessment of the biomarkers in biological samples. We provide a simple conceptual scheme for diagnosing MPS in uncharacterized samples and a method to monitor efficacy of enzyme replacement therapy or other forms of treatment.


Journal of Biological Chemistry | 2009

Characterization of the Human Sulfatase Sulf1 and Its High Affinity Heparin/Heparan Sulfate Interaction Domain

Marc-André Frese; Fabian Milz; Marina Dick; William C. Lamanna; Thomas Dierks

The extracellular sulfatases Sulf1 and Sulf2 remodel the 6O-sulfation state of heparan sulfate proteoglycans on the cell surface, thereby modulating growth factor signaling. Different from all other sulfatases, the Sulfs contain a unique, positively charged hydrophilic domain (HD) of about 320 amino acid residues. Using various HD deletion mutants and glutathione S-transferase (GST)-HD fusion proteins, this study demonstrates that the HD is required for enzymatic activity and acts as a high affinity heparin/heparan sulfate interaction domain. Association of the HD with the cell surface is sensitive to heparinase treatment, underlining specificity toward heparan sulfate chains. Correspondingly, isolated GST-HD binds strongly to both heparin and heparan sulfate in vitro and also to living cells. Surface plasmon resonance studies indicate nanomolar affinity of GST-HD toward immobilized heparin. The comparison of different mutants reveals that especially the outer regions of the HD mediate heparan sulfate binding, probably involving “tandem” interactions. Interestingly, binding to heparan sulfate depends on the presence of 6O-sulfate substrate groups, suggesting that substrate turnover facilitates release of the enzyme from its substrate. Deletion of the inner, less conserved region of the HD drastically increases Sulf1 secretion without affecting enzymatic activity or substrate specificity, thus providing a tool for the in vitro modulation of HS-dependent signaling as demonstrated here for the signal transduction of fibroblast growth factor 2. Taken together, the present study shows that specific regions of the HD influence different aspects of HS binding, cellular localization, and enzyme function.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Arylsulfatase G inactivation causes loss of heparan sulfate 3-O-sulfatase activity and mucopolysaccharidosis in mice

Björn Kowalewski; William C. Lamanna; Roger Lawrence; Markus Damme; Stijn Stroobants; Michael Padva; Ina Kalus; Marc-André Frese; Torben Lübke; Rrenate Lüllmann-Rauch; Rudi D'Hooge; Jeffrey D. Esko; Thomas Dierks

Deficiency of glycosaminoglycan (GAG) degradation causes a subclass of lysosomal storage disorders called mucopolysaccharidoses (MPSs), many of which present with severe neuropathology. Critical steps in the degradation of the GAG heparan sulfate remain enigmatic. Here we show that the lysosomal arylsulfatase G (ARSG) is the long-sought glucosamine-3-O-sulfatase required to complete the degradation of heparan sulfate. Arsg-deficient mice accumulate heparan sulfate in visceral organs and the central nervous system and develop neuronal cell death and behavioral deficits. This accumulated heparan sulfate exhibits unique nonreducing end structures with terminal N-sulfoglucosamine-3-O-sulfate residues, allowing diagnosis of the disorder. Recombinant human ARSG is able to cleave 3-O-sulfate groups from these residues as well as from an authentic 3-O-sulfated N-sulfoglucosamine standard. Our results demonstrate the key role of ARSG in heparan sulfate degradation and strongly suggest that ARSG deficiency represents a unique, as yet unknown form of MPS, which we term MPS IIIE.


Journal of Biological Chemistry | 2011

Secondary Storage of Dermatan Sulfate in Sanfilippo Disease

William C. Lamanna; Roger Lawrence; Stéphane Sarrazin; Jeffrey D. Esko

Mucopolysaccharidoses are a group of genetically inherited disorders that result from the defective activity of lysosomal enzymes involved in glycosaminoglycan catabolism, causing their intralysosomal accumulation. Sanfilippo disease describes a subset of mucopolysaccharidoses resulting from defects in heparan sulfate catabolism. Sanfilippo disorders cause severe neuropathology in affected children. The reason for such extensive central nervous system dysfunction is unresolved, but it may be associated with the secondary accumulation of metabolites such as gangliosides. In this article, we describe the accumulation of dermatan sulfate as a novel secondary metabolite in Sanfilippo. Based on chondroitinase ABC digestion, chondroitin/dermatan sulfate levels in fibroblasts from Sanfilippo patients were elevated 2–5-fold above wild-type dermal fibroblasts. Lysosomal turnover of chondroitin/dermatan sulfate in these cell lines was significantly impaired but could be normalized by reducing heparan sulfate storage using enzyme replacement therapy. Examination of chondroitin/dermatan sulfate catabolic enzymes showed that heparan sulfate and heparin can inhibit iduronate 2-sulfatase. Analysis of the chondroitin/dermatan sulfate fraction by chondroitinase ACII digestion showed dermatan sulfate storage, consistent with inhibition of iduronate 2-sulfatase. The discovery of a novel storage metabolite in Sanfilippo patients may have important implications for diagnosis and understanding disease pathology.


Journal of Biological Chemistry | 2012

A Genetic Model of Substrate Reduction Therapy for Mucopolysaccharidosis

William C. Lamanna; Roger Lawrence; Stéphane Sarrazin; Carlos Lameda-Diaz; Philip L.S.M. Gordts; Kelley W. Moremen; Jeffrey D. Esko

Background: Treatment of neuropathology in mucopolysaccharidoses may be possible by substrate reduction therapy. Results: A genetic model of substrate reduction therapy for mucopolysaccharidosis type IIIa ameliorates disease pathology in the brain. Conclusion: Partial inhibition of glycosaminoglycan biosynthesis may be useful for treating mucopolysaccharidoses type III. Significance: Proof of principle is presented that inhibition of heparan sulfate synthesis might prove beneficial for treating mucopolysaccharidoses. Inherited defects in the ability to catabolize glycosaminoglycans result in lysosomal storage disorders known as mucopolysaccharidoses (MPS), causing severe pathology, particularly in the brain. Enzyme replacement therapy has been used to treat mucopolysaccharidoses; however, neuropathology has remained refractory to this approach. To test directly whether substrate reduction might be feasible for treating MPS disease, we developed a genetic model for substrate reduction therapy by crossing MPS IIIa mice with animals partially deficient in heparan sulfate biosynthesis due to heterozygosity in Ext1 and Ext2, genes that encode the copolymerase required for heparan sulfate chain assembly. Reduction of heparan sulfate by 30–50% using this genetic strategy ameliorated the amount of disease-specific biomarker and pathology in multiple tissues, including the brain. In addition, we were able to demonstrate that substrate reduction therapy can improve the efficacy of enzyme replacement therapy in cell culture and in mice. These results provide proof of principle that targeted inhibition of heparan sulfate biosynthetic enzymes together with enzyme replacement might prove beneficial for treating mucopolysaccharidoses.


Molecular Genetics and Metabolism | 2014

Intra-articular enzyme replacement therapy with rhIDUA is safe, well-tolerated, and reduces articular GAG storage in the canine model of mucopolysaccharidosis type I.

Raymond Y. Wang; Afshin Aminian; Michael F. McEntee; Shih-hsin Kan; Calogera M. Simonaro; William C. Lamanna; Roger Lawrence; N. Matthew Ellinwood; Catalina Guerra; Steven Q. Le; Patricia Dickson; Jeffrey D. Esko

BACKGROUND Treatment with intravenous enzyme replacement therapy and hematopoietic stem cell transplantation for mucopolysaccharidosis (MPS) type I does not address joint disease, resulting in persistent orthopedic complications and impaired quality of life. A proof-of-concept study was conducted to determine the safety, tolerability, and efficacy of intra-articular recombinant human iduronidase (IA-rhIDUA) enzyme replacement therapy in the canine MPS I model. METHODS Four MPS I dogs underwent monthly rhIDUA injections (0.58 mg/joint) into the right elbow and knee for 6 months. Contralateral elbows and knees concurrently received normal saline. No intravenous rhIDUA therapy was administered. Monthly blood counts, chemistries, anti-rhIDUA antibody titers, and synovial fluid cell counts were measured. Lysosomal storage of synoviocytes and chondrocytes, synovial macrophages and plasma cells were scored at baseline and 1 month following the final injection. RESULTS All injections were well-tolerated without adverse reactions. One animal required prednisone for spinal cord compression. There were no clinically significant abnormalities in blood counts or chemistries. Circulating anti-rhIDUA antibody titers gradually increased in all dogs except the prednisone-treated dog; plasma cells, which were absent in all baseline synovial specimens, were predominantly found in synovium of rhIDUA-treated joints at study-end. Lysosomal storage in synoviocytes and chondrocytes following 6 months of IA-rhIDUA demonstrated significant reduction compared to tissues at baseline, and saline-treated tissues at study-end. Mean joint synovial GAG levels in IA-rhIDUA joints were 8.62 ± 5.86 μg/mg dry weight and 21.6 ± 10.4 μg/mg dry weight in control joints (60% reduction). Cartilage heparan sulfate was also reduced in the IA-rhIDUA joints (113 ± 39.5 ng/g wet weight) compared to saline-treated joints (142 ± 56.4 ng/g wet weight). Synovial macrophage infiltration, which was present in all joints at baseline, was abolished in rhIDUA-treated joints only. CONCLUSIONS Intra-articular rhIDUA is well-tolerated and safe in the canine MPS I animal model. Qualitative and quantitative assessments indicate that IA-rhIDUA successfully reduces tissue and cellular GAG storage in synovium and articular cartilage, including cartilage deep to the articular surface, and eliminates inflammatory macrophages from synovial tissue. CLINICAL RELEVANCE The MPS I canine IA-rhIDUA results suggest that clinical studies should be performed to determine if IA-rhIDUA is a viable approach to ameliorating refractory orthopedic disease in human MPS I.


ACS Chemical Biology | 2017

Arylsulfatase K is the Lysosomal 2-Sulfoglucuronate Sulfatase

Omkar P. Dhamale; Roger Lawrence; Elena Marie Wiegmann; Bhahwal Ali Shah; Kanar Al-Mafraji; William C. Lamanna; Torben Lübke; Thomas Dierks; Geert-Jan Boons; Jeffrey D. Esko

The degradation of glycosaminoglycans (GAGs) involves a series of exolytic glycosidases and sulfatases that act sequentially on the nonreducing end of the polysaccharide chain. Enzymes have been cloned that catalyze all of the known linkages with the exception of the removal of the 2-O-sulfate group from 2-sulfoglucuronate, which is found in heparan sulfate and dermatan sulfate. Here, we show using synthetic disaccharide substrates that arylsulfatase K is the glucuronate-2-sulfatase. Arylsulfatase K acts selectively on 2-sulfoglucuronate and lacks activity against 2-sulfoiduronate, whereas iduronate-2-sulfatase (IDS) desulfates synthetic disaccharides containing 2-sulfoiduronate but not 2-sulfoglucuronate. As arylsulfatase K has all of the properties expected of a lysosomal enzyme, we conclude that arylsulfatase K is the long sought lysosomal glucuronate-2-sulfatase, which we designate GDS.

Collaboration


Dive into the William C. Lamanna's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roger Lawrence

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Padva

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge