Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where William E. Wu is active.

Publication


Featured researches published by William E. Wu.


Neurobiology of Aging | 2012

Whole brain N-acetylaspartate concentration is conserved throughout normal aging

William E. Wu; Achim Gass; Lidia Glodzik; James S. Babb; Jochen G. Hirsch; Marc Sollberger; Lutz Achtnichts; Michael Amann; Andreas U. Monsch; Oded Gonen

We hypothesize that normal aging implies neuronal durability, reflected by age-independent concentrations of their marker--the amino acid derivative N-acetylaspartate (NAA). To test this, we obtained the whole-brain and whole-head N-acetylaspartate concentrations (WBNAA and WHNAA) with proton magnetic resonance (MR) spectroscopy; and the fractional brain parenchyma volume (fBPV)--a metric of atrophy, by segmenting the magnetic resonance image (MRI) from 42 (18 male) healthy young (31.9 ± 5.8 years old) and 100 (64 male, 72.6 ± 7.3 years old) cognitively normal elderly. The 12.8 ± 1.9 mM WBNAA of the young was not significantly different from the 13.1 ± 3.1 mM in the elderly (p > 0.05). In contrast, both fBPV (87.3 ± 4.7% vs. 74.8 ± 4.8%) and WHNAA (11.1 ± 1.7 mM vs. 9.8 ± 2.4 mM) were significantly higher in the young (approximately 14%; p < 0.0001 for both). The similarity in mean WBNAA between 2 cohorts 4 decades of normal aging apart suggests that neuronal integrity is maintained across the lifespan. Clinically, WBNAA could be used as a marker for normal (hence, also abnormal) brain aging. In contrast, WHNAA and fBPV seem age-related suggesting that brain atrophy may occur without compromising the remaining tissue.


NMR in Biomedicine | 2014

Automated whole-brain N-acetylaspartate proton MRS quantification.

Brian J. Soher; William E. Wu; Assaf Tal; Pippa Storey; Ke Zhang; James S. Babb; Kirov; Yvonne W. Lui; Oded Gonen

Concentration of the neuronal marker, N‐acetylaspartate (NAA), a quantitative metric for the health and density of neurons, is currently obtained by integration of the manually defined peak in whole‐head proton (1H)‐MRS. Our goal was to develop a full spectral modeling approach for the automatic estimation of the whole‐brain NAA concentration (WBNAA) and to compare the performance of this approach with a manual frequency‐range peak integration approach previously employed. MRI and whole‐head 1H‐MRS from 18 healthy young adults were examined. Non‐localized, whole‐head 1H‐MRS obtained at 3 T yielded the NAA peak area through both manually defined frequency‐range integration and the new, full spectral simulation. The NAA peak area was converted into an absolute amount with phantom replacement and normalized for brain volume (segmented from T1‐weighted MRI) to yield WBNAA. A paired‐sample t test was used to compare the means of the WBNAA paradigms and a likelihood ratio test used to compare their coefficients of variation. While the between‐subject WBNAA means were nearly identical (12.8 ± 2.5 mm for integration, 12.8 ± 1.4 mm for spectral modeling), the latters standard deviation was significantly smaller (by ~50%, p = 0.026). The within‐subject variability was 11.7% (±1.3 mm) for integration versus 7.0% (±0.8 mm) for spectral modeling, i.e., a 40% improvement. The (quantifiable) quality of the modeling approach was high, as reflected by Cramer–Rao lower bounds below 0.1% and vanishingly small (experimental ‐ fitted) residuals. Modeling of the whole‐head 1H‐MRS increases WBNAA quantification reliability by reducing its variability, its susceptibility to operator bias and baseline roll, and by providing quality‐control feedback. Together, these enhance the usefulness of the technique for monitoring the diffuse progression and treatment response of neurological disorders. Copyright


NMR in Biomedicine | 2013

Global gray and white matter metabolic changes after simian immunodeficiency virus infection in CD8-depleted rhesus macaques: proton MRS imaging at 3 T

William E. Wu; Assaf Tal; Ivan I. Kirov; Henry Rusinek; Daniel Charytonowicz; James S. Babb; Eva-Maria Ratai; R. Gilberto Gonzalez; Oded Gonen

To test the hypotheses that global decreased neuro‐axonal integrity reflected by decreased N‐acetylaspartate (NAA) and increased glial activation reflected by an elevation in its marker, the myo‐inositol (mI), present in a CD8‐depleted rhesus macaque model of HIV‐associated neurocognitive disorders. To this end, we performed quantitative MRI and 16 × 16 × 4 multivoxel proton MRS imaging (TE/TR = 33/1400 ms) in five macaques pre‐ and 4–6 weeks post‐simian immunodeficiency virus infection. Absolute NAA, creatine, choline (Cho), and mI concentrations, gray and white matter (GM and WM) and cerebrospinal fluid fractions were obtained. Global GM and WM concentrations were estimated from 224 voxels (at 0.125 cm3 spatial resolution over ~35% of the brain) using linear regression. Pre‐ to post‐infection global WM NAA declined 8%: 6.6 ± 0.4 to 6.0 ± 0.5 mM (p = 0.05); GM Cho declined 20%: 1.3 ± 0.2 to 1.0 ± 0.1 mM (p < 0.003); global mI increased 11%: 5.7 ± 0.4 to 6.5 ± 0.5 mM (p < 0.03). Global GM and WM brain volume fraction changes were statistically insignificant. These metabolic changes are consistent with global WM (axonal) injury and glial activation, and suggest a possible GM host immune response. Copyright


AIDS | 2013

Structure-specific glial response in a macaque model of neuroAIDS: multivoxel proton magnetic resonance spectroscopic imaging at 3 Tesla.

William E. Wu; Assaf Tal; Ke Zhang; James S. Babb; Eva-Maria Ratai; R.G. González; Oded Gonen

Objective:As ∼40% of persons with HIV also suffer neurocognitive decline, we sought to assess metabolic dysfunction in the brains of simian immunodeficiency virus (SIV)-infected rhesus macaques, an advanced animal model, in structures involved in cognitive function. We test the hypothesis that SIV-infection produces proton-magnetic resonance spectroscopic imaging (1H-MRSI)-observed decline in the neuronal marker, N-acetylaspartate (NAA), and elevations in the glial marker, myo-inositol (mI), and associated creatine (Cr) and choline (Cho) in these structures. Design:Pre- and 4–6 weeks post-SIV infection (with CD8+ T-lymphocyte depletion) was monitored with T2-weighted quantitative MRI and 16 × 16 × 4 multivoxel 1H-MRSI (TE/TR = 33/1400 ms) in the brains of five rhesus macaques. Methods:Exploiting the high-resolution 1H-MRSI grid, we obtained absolute, cerebrospinal fluid partial volume-corrected NAA, Cr, Cho and mI concentrations from centrum semiovale, caudate nucleus, putamen, thalamus and hippocampus regions. Results:Pre- to post-infection mean Cr increased in the thalamus: 7.2 ± 0.4 to 8.0 ± 0.8 mmol/l (+11%, P < 0.05); mI increased in the centrum semiovale: 5.1 ± 0.8 to 6.6 ± 0.8 mmol/l, caudate: 5.7 ± 0.7 to 7.3 ± 0.5 mmol/l, thalamus: 6.8 ± 0.8 to 8.5 ± 0.8 mmol/l and hippocampus: 7.7 ± 1.2 to 9.9 ± 0.4 mmol/l (+29%, +27%, +24% and +29%, all P < 0.05). NAA and Cho changes were not significant. Conclusion:SIV-infection appears to cause brain injury indirectly, through glial activation, while the deep gray matter structures’ neuronal cell bodies are relatively spared. Treatment regimens to reduce gliosis may, therefore, prevent neuronal damage and its associated neurocognitive impairment.


Psychiatry Research-neuroimaging | 2012

The whole-brain N-acetylaspartate correlates with education in normal adults

Lidia Glodzik; William E. Wu; James S. Babb; Lutz Achtnichts; Michael Amann; Marc Sollberger; Andreas U. Monsch; Achim Gass; Oded Gonen

N-acetylaspartate (NAA) is an index of neuronal integrity. We hypothesized that in healthy subjects its whole brain concentration (WBNAA) may be related to formal educational attainment, a common proxy for cognitive reserve. To test this hypothesis, 97 middle aged to elderly subjects (51-89 years old, 38% women) underwent brain magnetic resonance imaging and non-localizing proton spectroscopy. Their WBNAA was obtained by dividing their whole-head NAA amount by the brain volume. Intracranial volume and fractional brain volume, a metric of brain atrophy, were also determined. Each subjects educational attainment was the sum of his/her years of formal education. In the entire group higher education was associated with larger intracranial volume. The relationship between WBNAA and education was observed only in younger (51-70 years old) participants. In this group, education explained 21% of the variance in WBNAA. More WBNAA was related to more years of formal education in adults and younger elders. Prospective studies can determine whether this relationship reflects a true advantage from years of training versus innate characteristics predisposing a subject to higher achievements later in life. We propose that late-life WBNAA may be more affected by other factors acting at midlife and later.


Magnetic Resonance Imaging | 2017

Quantifying global-brain metabolite level changes with whole-head proton MR spectroscopy at 3 T

Matthew S. Davitz; William E. Wu; Brian J. Soher; James S. Babb; Ivan I. Kirov; Jeffrey Huang; Girish Fatterpekar; Oded Gonen

BACKGROUND AND PURPOSE To assess the sensitivity of non-localized, whole-head 1H-MRS to an individuals serial changes in total-brain NAA, Glx, Cr and Cho concentrations - metabolite metrics often used as surrogate markers in neurological pathologies. MATERIALS AND METHODS In this prospective study, four back-to-back (single imaging session) and three serial (successive sessions) non-localizing, ~3min 1H-MRS (TE/TR/TI=5/104/940ms) scans were performed on 18 healthy young volunteers: 9 women, 9 men: 29.9±7.6 [mean±standard deviation (SD)] years old. These were analyzed by calculating a within-subject coefficient of variation (CV=SD/mean) to assess intra- and inter-scan repeatability and prediction intervals. This study was Health Insurance Portability and Accountability Act compliant. All subjects gave institutional review board-approved written, informed consent. RESULTS The intra-scan CVs for the NAA, Glx, Cr and Cho were: 3.9±1.8%, 7.3±4.6%, 4.0±3.4% and 2.5±1.6%, and the corresponding inter-scan (longitudinal) values were: 7.0±3.1%, 10.6±5.6%, 7.6±3.5% and 7.0±3.9%. This method is shown to have 80% power to detect changes of 14%, 27%, 26% and 19% between two serial measurements in a given individual. CONCLUSIONS Subject to the assumption that in neurological disorders NAA, Glx, Cr and Cho changes represent brain-only pathology and not muscles, bone marrow, adipose tissue or epithelial cells, this approach enables us to quantify them, thereby adding specificity to the assessment of the total disease load. This will facilitate monitoring diffuse pathologies with faster measurement, more extensive (~90% of the brain) spatial coverage and sensitivity than localized 1H-MRS.


Human Brain Mapping | 2017

Proton MR spectroscopy of lesion evolution in multiple sclerosis: Steady-state metabolism and its relationship to conventional imaging

Ivan I. Kirov; Shu Liu; Assaf Tal; William E. Wu; Matthew S. Davitz; James S. Babb; Henry Rusinek; Joseph Herbert; Oded Gonen

Although MRI assessment of white matter lesions is essential for the clinical management of multiple sclerosis, the processes leading to the formation of lesions and underlying their subsequent MRI appearance are incompletely understood. We used proton MR spectroscopy to study the evolution of N‐acetyl‐aspartate (NAA), creatine (Cr), choline (Cho), and myo‐inositol (mI) in pre‐lesional tissue, persistent and transient new lesions, as well as in chronic lesions, and related the results to quantitative MRI measures of T1‐hypointensity and T2‐volume. Within 10 patients with relapsing‐remitting course, there were 180 regions‐of‐interest consisting of up to seven semi‐annual follow‐ups of normal‐appearing white matter (NAWM, n = 10), pre‐lesional tissue giving rise to acute lesions which resolved (n = 3) or persisted (n = 3), and of moderately (n = 9) and severely hypointense (n = 6) chronic lesions. Compared with NAWM, pre‐lesional tissue had higher Cr and Cho, while compared with lesions, pre‐lesional tissue had higher NAA. Resolving acute lesions showed similar NAA levels pre‐ and post‐formation, suggesting no long‐term axonal damage. In chronic lesions, there was an increase in mI, suggesting accumulating astrogliosis. Lesion volume was a better predictor of axonal health than T1‐hypointensity, with lesions larger than 1.5 cm3 uniformly exhibiting very low (<4.5 millimolar) NAA concentrations. A positive correlation between longitudinal changes in Cho and in lesion volume in moderately hypointense lesions implied that lesion size is mediated by chronic inflammation. These and other results are integrated in a discussion on the steady‐state metabolism of lesion evolution in multiple sclerosis, viewed in the context of conventional MRI measures. Hum Brain Mapp 38:4047–4063, 2017.


Hiv Medicine | 2015

Early glial activation precedes neurodegeneration in the cerebral cortex after SIV infection: a 3D, multivoxel proton magnetic resonance spectroscopy study.

William E. Wu; James S. Babb; Assaf Tal; Kirov; Ajax E. George; Eva-Maria Ratai; Gonzalez Rg; Oded Gonen

As ∼40% of HIV‐infected individuals experience neurocognitive decline, we investigated whether proton magnetic resonance spectroscopic imaging (1H‐MRSI) detects early metabolic abnormalities in the cerebral cortex of a simian immunodeficiency virus (SIV)‐infected rhesus monkey model of neuroAIDS.


NMR in Biomedicine | 2017

Global brain metabolic quantification with whole‐head proton MRS at 3 T

Ivan I. Kirov; William E. Wu; Brian J. Soher; Matthew S. Davitz; Jeffrey Huang; James S. Babb; Mariana Lazar; Girish Fatterpekar; Oded Gonen

Total N‐acetyl‐aspartate + N‐acetyl‐aspartate–glutamate (NAA), total creatine (Cr) and total choline (Cho) proton MRS (1H–MRS) signals are often used as surrogate markers in diffuse neurological pathologies, but spatial coverage of this methodology is limited to 1%–65% of the brain. Here we wish to demonstrate that non‐localized, whole‐head (WH) 1H–MRS captures just the brains contribution to the Cho and Cr signals, ignoring all other compartments. Towards this end, 27 young healthy adults (18 men, 9 women), 29.9 ± 8.5 years old, were recruited and underwent T1‐weighted MRI for tissue segmentation, non‐localizing, approximately 3 min WH 1H–MRS (TE/TR/TI = 5/10 /940 ms) and 30 min 1H–MR spectroscopic imaging (MRSI) (TE/TR = 35/2100 ms) in a 360 cm3 volume of interest (VOI) at the brains center. The VOI absolute NAA, Cr and Cho concentrations, 7.7 ± 0.5, 5.5 ± 0.4 and 1.3 ± 0.2 mM, were all within 10% of the WH: 8.6 ± 1.1, 6.0 ± 1.0 and 1.3 ± 0.2 mM. The mean NAA/Cr and NAA/Cho ratios in the WH were only slightly higher than the “brain‐only” VOI: 1.5 versus 1.4 (7%) and 6.6 versus 5.9 (11%); Cho/Cr were not different. The brain/WH volume ratio was 0.31 ± 0.03 (brain ≈ 30% of WH volume). Air‐tissue susceptibility‐driven local magnetic field changes going from the brain outwards showed sharp gradients of more than 100 Hz/cm (1 ppm/cm), explaining the skulls Cr and Cho signal losses through resonance shifts, line broadening and destructive interference. The similarity of non‐localized WH and localized VOI NAA, Cr and Cho concentrations and their ratios suggests that their signals originate predominantly from the brain. Therefore, the fast, comprehensive WH‐1H‐MRS method may facilitate quantification of these metabolites, which are common surrogate markers in neurological disorders.


NMR in Biomedicine | 2014

Automated Whole-Brain N-Acetylaspartate Proton MR Spectroscopic Quantification

Brian J. Soher; William E. Wu; Assaf Tal; Pippa Storey; Ke Zhang; James S. Babb; Yvonne W. Lui; Oded Gonen

Concentration of the neuronal marker, N‐acetylaspartate (NAA), a quantitative metric for the health and density of neurons, is currently obtained by integration of the manually defined peak in whole‐head proton (1H)‐MRS. Our goal was to develop a full spectral modeling approach for the automatic estimation of the whole‐brain NAA concentration (WBNAA) and to compare the performance of this approach with a manual frequency‐range peak integration approach previously employed. MRI and whole‐head 1H‐MRS from 18 healthy young adults were examined. Non‐localized, whole‐head 1H‐MRS obtained at 3 T yielded the NAA peak area through both manually defined frequency‐range integration and the new, full spectral simulation. The NAA peak area was converted into an absolute amount with phantom replacement and normalized for brain volume (segmented from T1‐weighted MRI) to yield WBNAA. A paired‐sample t test was used to compare the means of the WBNAA paradigms and a likelihood ratio test used to compare their coefficients of variation. While the between‐subject WBNAA means were nearly identical (12.8 ± 2.5 mm for integration, 12.8 ± 1.4 mm for spectral modeling), the latters standard deviation was significantly smaller (by ~50%, p = 0.026). The within‐subject variability was 11.7% (±1.3 mm) for integration versus 7.0% (±0.8 mm) for spectral modeling, i.e., a 40% improvement. The (quantifiable) quality of the modeling approach was high, as reflected by Cramer–Rao lower bounds below 0.1% and vanishingly small (experimental ‐ fitted) residuals. Modeling of the whole‐head 1H‐MRS increases WBNAA quantification reliability by reducing its variability, its susceptibility to operator bias and baseline roll, and by providing quality‐control feedback. Together, these enhance the usefulness of the technique for monitoring the diffuse progression and treatment response of neurological disorders. Copyright

Collaboration


Dive into the William E. Wu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Assaf Tal

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge