Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where William G. Fairbrother is active.

Publication


Featured researches published by William G. Fairbrother.


Nucleic Acids Research | 2004

RESCUE-ESE identifies candidate exonic splicing enhancers in vertebrate exons

William G. Fairbrother; Gene W. Yeo; Ru-Fang Yeh; Paul Goldstein; Matthew Mawson; Phillip A. Sharp; Christopher B. Burge

A typical gene contains two levels of information: a sequence that encodes a particular protein and a host of other signals that are necessary for the correct expression of the transcript. While much attention has been focused on the effects of sequence variation on the amino acid sequence, variations that disrupt gene processing signals can dramatically impact gene function. A variation that disrupts an exonic splicing enhancer (ESE), for example, could cause exon skipping which would result in the exclusion of an entire exon from the mRNA transcript. RESCUE-ESE, a computational approach used in conjunction with experimental validation, previously identified 238 candidate ESE hexamers in human genes. The RESCUE-ESE method has recently been implemented in three additional species: mouse, zebrafish and pufferfish. Here we describe an online ESE analysis tool (http://genes.mit.edu/burgelab/rescue-ese/) that annotates RESCUE-ESE hexamers in vertebrate exons and can be used to predict splicing phenotypes by identifying sequence changes that disrupt or alter predicted ESEs.


PLOS Biology | 2004

Single Nucleotide Polymorphism–Based Validation of Exonic Splicing Enhancers

William G. Fairbrother; Dirk Holste; Christopher B. Burge; Phillip A. Sharp

Because deleterious alleles arising from mutation are filtered by natural selection, mutations that create such alleles will be underrepresented in the set of common genetic variation existing in a population at any given time. Here, we describe an approach based on this idea called VERIFY (variant elimination reinforces functionality), which can be used to assess the extent of natural selection acting on an oligonucleotide motif or set of motifs predicted to have biological activity. As an application of this approach, we analyzed a set of 238 hexanucleotides previously predicted to have exonic splicing enhancer (ESE) activity in human exons using the relative enhancer and silencer classification by unanimous enrichment (RESCUE)-ESE method. Aligning the single nucleotide polymorphisms (SNPs) from the public human SNP database to the chimpanzee genome allowed inference of the direction of the mutations that created present-day SNPs. Analyzing the set of SNPs that overlap RESCUE-ESE hexamers, we conclude that nearly one-fifth of the mutations that disrupt predicted ESEs have been eliminated by natural selection (odds ratio = 0.82 ± 0.05). This selection is strongest for the predicted ESEs that are located near splice sites. Our results demonstrate a novel approach for quantifying the extent of natural selection acting on candidate functional motifs and also suggest certain features of mutations/SNPs, such as proximity to the splice site and disruption or alteration of predicted ESEs, that should be useful in identifying variants that might cause a biological phenotype.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Using positional distribution to identify splicing elements and predict pre-mRNA processing defects in human genes

Kian Huat Lim; Luciana Ferraris; Madeleine E. Filloux; Benjamin J. Raphael; William G. Fairbrother

We present an intuitive strategy for predicting the effect of sequence variation on splicing. In contrast to transcriptional elements, splicing elements appear to be strongly position dependent. We demonstrated that exonic binding of the normally intronic splicing factor, U2AF65, inhibits splicing. Reasoning that the positional distribution of a splicing element is a signature of its function, we developed a method for organizing all possible sequence motifs into clusters based on the genomic profile of their positional distribution around splice sites. Binding sites for serine/arginine rich (SR) proteins tended to be exonic whereas heterogeneous ribonucleoprotein (hnRNP) recognition elements were mostly intronic. In addition to the known elements, novel motifs were returned and validated. This method was also predictive of splicing mutations. A mutation in a motif creates a new motif that sometimes has a similar distribution shape to the original motif and sometimes has a different distribution. We created an intraallelic distance measure to capture this property and found that mutations that created large intraallelic distances disrupted splicing in vivo whereas mutations with small distances did not alter splicing. Analyzing the dataset of human disease alleles revealed known splicing mutants to have high intraallelic distances and suggested that 22% of disease alleles that were originally classified as missense mutations may also affect splicing. This category together with mutations in the canonical splicing signals suggest that approximately one third of all disease-causing mutations alter pre-mRNA splicing.


Molecular and Cellular Biology | 2000

Human Genomic Sequences That Inhibit Splicing

William G. Fairbrother; Lawrence A. Chasin

ABSTRACT Mammalian genes are characterized by relatively small exons surrounded by variable lengths of intronic sequence. Sequences similar to the splice signals that define the 5′ and 3′ boundaries of these exons are also present in abundance throughout the surrounding introns. What causes the real sites to be distinguished from the multitude of pseudosites in pre-mRNA is unclear. Much progress has been made in defining additional sequence elements that enhance the use of particular sites. Less work has been done on sequences that repress the use of particular splice sites. To find additional examples of sequences that inhibit splicing, we searched human genomic DNA libraries for sequences that would inhibit the inclusion of a constitutively spliced exon. Genetic selection experiments suggested that such sequences were common, and we subsequently tested randomly chosen restriction fragments of about 100 bp. When inserted into the central exon of a three-exon minigene, about one in three inhibited inclusion, revealing a high frequency of inhibitory elements in human DNA. In contrast, only 1 in 27 Escherichia coli DNA fragments was inhibitory. Several previously identified silencing elements derived from alternatively spliced exons functioned weakly in this constitutively spliced exon. In contrast, a high-affinity site for U2AF65 strongly inhibited exon inclusion. Together, our results suggest that splicing occurs in a background of repression and, since many of our inhibitors contain splice like signals, we suggest that repression of some pseudosites may occur through an inhibitory arrangement of these sites.


Neurology | 2013

Recessive truncating titin gene, TTN, mutations presenting as centronuclear myopathy.

Ozge Ceyhan-Birsoy; Pankaj B. Agrawal; Carlos Hidalgo; Klaus Schmitz-Abe; Elizabeth T. DeChene; Lindsay C. Swanson; Rachel Soemedi; Nasim Vasli; Susan T. Iannaccone; Perry B. Shieh; Natasha Shur; Jane M. Dennison; Michael W. Lawlor; Jocelyn Laporte; Kyriacos Markianos; William G. Fairbrother; Henk Granzier; Alan H. Beggs

Objective: To identify causative genes for centronuclear myopathies (CNM), a heterogeneous group of rare inherited muscle disorders that often present in infancy or early life with weakness and hypotonia, using next-generation sequencing of whole exomes and genomes. Methods: Whole-exome or -genome sequencing was performed in a cohort of 29 unrelated patients with clinicopathologic diagnoses of CNM or related myopathy depleted for cases with mutations of MTM1, DNM2, and BIN1. Immunofluorescence analyses on muscle biopsies, splicing assays, and gel electrophoresis of patient muscle proteins were performed to determine the molecular consequences of mutations of interest. Results: Autosomal recessive compound heterozygous truncating mutations of the titin gene, TTN, were identified in 5 individuals. Biochemical analyses demonstrated increased titin degradation and truncated titin proteins in patient muscles, establishing the impact of the mutations. Conclusions: Our study identifies truncating TTN mutations as a cause of congenital myopathy that is reported as CNM. Unlike the classic CNM genes that are all involved in excitation-contraction coupling at the triad, TTN encodes the giant sarcomeric protein titin, which forms a myofibrillar backbone for the components of the contractile machinery. This study expands the phenotypic spectrum associated with TTN mutations and indicates that TTN mutation analysis should be considered in cases of possible CNM without mutations in the classic CNM genes.


Genes & Development | 2009

A general mechanism for transcription regulation by Oct1 and Oct4 in response to genotoxic and oxidative stress

Jinsuk Kang; Matthew Gemberling; Mitsuhiro Nakamura; Frank G. Whitby; Hiroshi Handa; William G. Fairbrother; Dean Tantin

Oct1 and Oct4 are homologous transcription factors with similar DNA-binding specificities. Here we show that Oct1 is dynamically phosphorylated in vivo following exposure of cells to oxidative and genotoxic stress. We further show that stress regulates the selectivity of both proteins for specific DNA sequences. Mutation of conserved phosphorylation target DNA-binding domain residues in Oct1, and Oct4 confirms their role in regulating binding selectivity. Using chromatin immunoprecipitation, we show that association of Oct4 and Oct1 with a distinct group of in vivo targets is inducible by stress, and that Oct1 is essential for a normal post-stress transcriptional response. Finally, using an unbiased Oct1 target screen we identify a large number of genes targeted by Oct1 specifically under conditions of stress, and show that several of these inducible Oct1 targets are also inducibly bound by Oct4 in embryonic stem cells following stress exposure.


Nature Structural & Molecular Biology | 2012

Large-scale mapping of branchpoints in human pre-mRNA transcripts in vivo

Allison J. Taggart; Alec M. DeSimone; Janice S Shih; Madeleine E. Filloux; William G. Fairbrother

We present the first large-scale identification of lariats—the transient branched introns that are released as a byproduct of pre-mRNA splicing. The locations of the branchpoints in these introns provide insight into the early steps of splicing. From this data set, we have developed a comprehensive model of 3′ splice-site selection, identified new mechanisms of alternative splicing and mapped the distribution of splicing factors around branchpoints.


Journal of Immunology | 2005

Linking C5 Deficiency to an Exonic Splicing Enhancer Mutation

Nicole Pfarr; Dirk Prawitt; Michael Kirschfink; Claudia Schroff; Markus Knuf; Pirmin Habermehl; W. Mannhardt; Fred Zepp; William G. Fairbrother; Michael Loos; Christopher B. Burge; Joachim Pohlenz

As an important component of the innate immune system, complement provides the initial response to prevent infections by pathogenic microorganisms. Patients with dysfunction of C5 display a propensity for severe recurrent infections. In this study, we present a patient with C5 deficiency demonstrated by immunochemical and functional analyses. Direct sequencing of all C5 exons displayed no mutation of obvious functional significance, except for an A to G transition in exon 10 predicting an exchange from lysine to arginine. This sequence alteration was present in only one allele of family members with a reduced serum C5 concentration and in both alleles of the patient with almost complete C5 deficiency, suggesting that this alteration may be producing the phenotype. Recent findings indicate that distinct nucleotide sequences, termed exonic splicing enhancers (ESEs), influence the splicing process. cDNA from all family members harboring the mutated allele showed skipping of exon 10, which resulted in a premature STOP codon, explaining the lack of C5 in the propositus. Sequence analysis of the mutated region revealed the substitution to be located within an ESE, as predicted by the RESCUE-ESE program. The altered ESE sequence is located close to the 5′ splicing site and also lowers the predicted strength of the splice site itself. This apparently inconsequential sequence alteration represents a noncanonical splicing mutation altering an ESE. Our finding sheds a new light on the role of putative silent/conservative mutations in disease-associated genes.


Nature Reviews Cancer | 2016

The importance of p53 pathway genetics in inherited and somatic cancer genomes

Giovanni Stracquadanio; Xuting Wang; Marsha D. Wallace; Anna M. Grawenda; Ping Zhang; Juliet Hewitt; Jorge Zeron-Medina; Francesc Castro-Giner; Ian Tomlinson; Colin R. Goding; Kamil J. Cygan; William G. Fairbrother; Laurent F. Thomas; Pål Sætrom; Federica Gemignani; Stefano Landi; Benjamin Schuster-Böckler; Douglas A. Bell; Gareth L. Bond

Decades of research have shown that mutations in the p53 stress response pathway affect the incidence of diverse cancers more than mutations in other pathways. However, most evidence is limited to somatic mutations and rare inherited mutations. Using newly abundant genomic data, we demonstrate that commonly inherited genetic variants in the p53 pathway also affect the incidence of a broad range of cancers more than variants in other pathways. The cancer-associated single nucleotide polymorphisms (SNPs) of the p53 pathway have strikingly similar genetic characteristics to well-studied p53 pathway cancer-causing somatic mutations. Our results enable insights into p53-mediated tumour suppression in humans and into p53 pathway-based cancer surveillance and treatment strategies.


Genome Research | 2008

High-throughput biochemical analysis of in vivo location data reveals novel distinct classes of POU5F1(Oct4)/DNA complexes

Dean Tantin; Matthew Gemberling; Catherine Callister; William G. Fairbrother

The transcription factor POU5F1 is a key regulator of embryonic stem (ES) cell pluripotency and a known oncoprotein. We have developed a novel high-throughput binding assay called MEGAshift (microarray evaluation of genomic aptamers by shift) that we use to pinpoint the exact location, affinity, and stoichiometry of the DNA-protein complexes identified by chromatin immunoprecipitation studies. We consider all genomic regions identified as POU5F1-ChIP-enriched in both human and mouse. Compared with regions that are ChIP-enriched in a single species, we find these regions more likely to be near actively transcribed genes in ES cells. We resynthesize these genomic regions as a pool of tiled 35-mers. This oligonucleotide pool is then assayed for binding to recombinant POU5F1 by gel shift. The degree of binding for each oligonucleotide is accurately measured on a custom oligonucleotide microarray. We explore the relationship between experimentally determined and computationally predicted binding strengths, find many novel functional combinations of POU5F1 half sites, and demonstrate efficient motif discovery by incorporating binding information into a motif finding algorithm. In addition to further refining location studies for transcription factors, this method holds promise for the high-throughput screening of promoters, SNP regions, and epigenetic modifications for factor binding.

Collaboration


Dive into the William G. Fairbrother's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christopher B. Burge

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge