Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dean Tantin is active.

Publication


Featured researches published by Dean Tantin.


Nature | 2013

Dynamic regulatory network controlling Th17 cell differentiation

Nir Yosef; Alex K. Shalek; Jellert T. Gaublomme; Hulin Jin; Youjin Lee; Amit Awasthi; Chuan Wu; Katarzyna Karwacz; Sheng Xiao; Marsela Jorgolli; David Gennert; Rahul Satija; Arvind Shakya; Diana Y. Lu; John J. Trombetta; Meenu R. Pillai; Peter J. Ratcliffe; Mathew L. Coleman; Mark Bix; Dean Tantin; Hongkun Park; Vijay K. Kuchroo; Aviv Regev

Despite their importance, the molecular circuits that control the differentiation of naive T cells remain largely unknown. Recent studies that reconstructed regulatory networks in mammalian cells have focused on short-term responses and relied on perturbation-based approaches that cannot be readily applied to primary T cells. Here we combine transcriptional profiling at high temporal resolution, novel computational algorithms, and innovative nanowire-based perturbation tools to systematically derive and experimentally validate a model of the dynamic regulatory network that controls the differentiation of mouse TH17 cells, a proinflammatory T-cell subset that has been implicated in the pathogenesis of multiple autoimmune diseases. The TH17 transcriptional network consists of two self-reinforcing, but mutually antagonistic, modules, with 12 novel regulators, the coupled action of which may be essential for maintaining the balance between TH17 and other CD4+ T-cell subsets. Our study identifies and validates 39 regulatory factors, embeds them within a comprehensive temporal network and reveals its organizational principles; it also highlights novel drug targets for controlling TH17 cell differentiation.


Trends in Biochemical Sciences | 2009

Stem cells, stress, metabolism and cancer: a drama in two Octs

Jinsuk Kang; Arvind Shakya; Dean Tantin

It is a classic story of two related transcription factors. Oct4 is a potent regulator of pluripotency during early mammalian embryonic development, and is notable for its ability to convert adult somatic cells to pluripotency. The widely expressed Oct1 protein shares significant homology with Oct4, binds to the same sequences, regulates common target genes, and shares common modes of upstream regulation, including the ability to respond to cellular stress. Both proteins are also associated with malignancy, yet Oct1 cannot substitute for Oct4 in the generation of pluripotency. The molecular underpinnings of these phenomena are emerging, as are the consequences for adult stem cells and cancer, and thereby hangs a tale.


Genes & Development | 2009

A general mechanism for transcription regulation by Oct1 and Oct4 in response to genotoxic and oxidative stress

Jinsuk Kang; Matthew Gemberling; Mitsuhiro Nakamura; Frank G. Whitby; Hiroshi Handa; William G. Fairbrother; Dean Tantin

Oct1 and Oct4 are homologous transcription factors with similar DNA-binding specificities. Here we show that Oct1 is dynamically phosphorylated in vivo following exposure of cells to oxidative and genotoxic stress. We further show that stress regulates the selectivity of both proteins for specific DNA sequences. Mutation of conserved phosphorylation target DNA-binding domain residues in Oct1, and Oct4 confirms their role in regulating binding selectivity. Using chromatin immunoprecipitation, we show that association of Oct4 and Oct1 with a distinct group of in vivo targets is inducible by stress, and that Oct1 is essential for a normal post-stress transcriptional response. Finally, using an unbiased Oct1 target screen we identify a large number of genes targeted by Oct1 specifically under conditions of stress, and show that several of these inducible Oct1 targets are also inducibly bound by Oct4 in embryonic stem cells following stress exposure.


Nature Cell Biology | 2009

Oct1 loss of function induces a coordinate metabolic shift that opposes tumorigenicity

Arvind Shakya; Robert C. Cooksey; James Cox; Victoria Wang; Donald A. McClain; Dean Tantin

Cancer cells frequently undergo a shift from oxidative to glycolytic metabolism. Although there is interest in targeting metabolism as a form of cancer therapy, this area still remains in its infancy. Using cells, embryos and adult animals, we show here that loss of the widely expressed transcription factor Oct1 induces a coordinated metabolic shift: mitochondrial activity and amino acid oxidation are increased, while glucose metabolism is reduced. Altered expression of direct Oct1 targets encoding metabolic regulators provides a mechanistic underpinning to these results. We show that these metabolic changes directly oppose tumorigenicity. Collectively, our findings show that Oct1, the genes it regulates and the pathways these genes affect could be used as targets for new modes of cancer therapy.


Development | 2013

Oct transcription factors in development and stem cells: insights and mechanisms.

Dean Tantin

The POU domain family of transcription factors regulates developmental processes ranging from specification of the early embryo to terminal differentiation. About half of these factors display substantial affinity for an 8 bp DNA site termed the octamer motif, and are hence known as Oct proteins. Oct4 (Pou5f1) is a well-known Oct factor, but there are other Oct proteins with varied and essential roles in development. This Primer outlines our current understanding of Oct proteins and the regulatory mechanisms that govern their role in developmental processes and concludes with the assertion that more investigation into their developmental functions is needed.


Journal of Biological Chemistry | 2011

Oct1 Is a Switchable, Bipotential Stabilizer of Repressed and Inducible Transcriptional States

Arvind Shakya; Jinsuk Kang; Jeffrey Chumley; Matthew A. Williams; Dean Tantin

Little is known regarding how the Oct1 transcription factor regulates target gene expression. Using murine fibroblasts and two target genes, Polr2a and Ahcy, we show that Oct1 recruits the Jmjd1a/KDM3A lysine demethylase to catalyze the removal of the inhibitory histone H3K9 dimethyl mark and block repression. Using purified murine T cells and the Il2 target locus, and a colon cancer cell line and the Cdx2 target locus, we show that Oct1 recruits the NuRD chromatin-remodeling complex to promote a repressed state, but in a regulated manner can switch to a different capacity and mediate Jmjd1a recruitment to block repression. These findings indicate that Oct1 maintains repression through a mechanism involving NuRD and maintains poised gene expression states through an antirepression mechanism involving Jmjd1a. We propose that, rather than acting as a primary trigger of gene activation or repression, Oct1 is a switchable stabilizer of repressed and inducible states.


Molecular and Cellular Biology | 2007

An Inducible Enhancer Required for Il12b Promoter Activity in an Insulated Chromatin Environment

Liang Zhou; Aaron A. Nazarian; Jian Xu; Dean Tantin; Lynn M. Corcoran; Stephen T. Smale

ABSTRACT Interleukin-12 (IL-12) and IL-23 are heterodimeric cytokines that serve as critical regulators of T helper cell development. The Il12b gene, which encodes the p40 subunit of both IL-12 and IL-23, is expressed in macrophages and dendritic cells following induction by bacterial products. Although the Il12b promoter, like the promoters of most proinflammatory genes, can support transcriptional induction in typical transfection assays, we show that it is not sufficient for transcription in an insulated chromatin environment. Using a DNase I hypersensitivity assay, two potential distal control regions were identified. One region, DNase I-hypersensitive site 1 (HSS1), located 10 kb upstream of the transcription start site, exhibited hypersensitivity only in stimulated macrophages. In an insulated environment, a 105-bp fragment spanning HSS1 was sufficient for transcription when combined with the Il12b promoter. Although several elements are likely to contribute to activity of the endogenous HSS1 enhancer, including an evolutionarily conserved binding site for C/EBP proteins, the only element required for activity in transient- and stable-transfection assays bound Oct-1 and Oct-2, both of which are expressed constitutively in macrophages. Oct-1 and Oct-2 were recruited to the enhancer upon macrophage stimulation, and the Oct site appeared important for nucleosome remodeling at HSS1. These results suggest that the HSS1 enhancer and Oct proteins play central roles in Il12b induction upon macrophage activation.


Genome Research | 2008

High-throughput biochemical analysis of in vivo location data reveals novel distinct classes of POU5F1(Oct4)/DNA complexes

Dean Tantin; Matthew Gemberling; Catherine Callister; William G. Fairbrother

The transcription factor POU5F1 is a key regulator of embryonic stem (ES) cell pluripotency and a known oncoprotein. We have developed a novel high-throughput binding assay called MEGAshift (microarray evaluation of genomic aptamers by shift) that we use to pinpoint the exact location, affinity, and stoichiometry of the DNA-protein complexes identified by chromatin immunoprecipitation studies. We consider all genomic regions identified as POU5F1-ChIP-enriched in both human and mouse. Compared with regions that are ChIP-enriched in a single species, we find these regions more likely to be near actively transcribed genes in ES cells. We resynthesize these genomic regions as a pool of tiled 35-mers. This oligonucleotide pool is then assayed for binding to recombinant POU5F1 by gel shift. The degree of binding for each oligonucleotide is accurately measured on a custom oligonucleotide microarray. We explore the relationship between experimentally determined and computationally predicted binding strengths, find many novel functional combinations of POU5F1 half sites, and demonstrate efficient motif discovery by incorporating binding information into a motif finding algorithm. In addition to further refining location studies for transcription factors, this method holds promise for the high-throughput screening of promoters, SNP regions, and epigenetic modifications for factor binding.


PLOS Genetics | 2012

Transcription Factor Oct1 Is a Somatic and Cancer Stem Cell Determinant

Jessica Maddox; Arvind Shakya; Samuel South; Dawne N. Shelton; Jared N. Andersen; Stephanie Chidester; Jinsuk Kang; Keith M. Gligorich; David A. Jones; Gerald J. Spangrude; Bryan E. Welm; Dean Tantin

Defining master transcription factors governing somatic and cancer stem cell identity is an important goal. Here we show that the Oct4 paralog Oct1, a transcription factor implicated in stress responses, metabolic control, and poised transcription states, regulates normal and pathologic stem cell function. Oct1HI cells in the colon and small intestine co-express known stem cell markers. In primary malignant tissue, high Oct1 protein but not mRNA levels strongly correlate with the frequency of CD24LOCD44HI cancer-initiating cells. Reducing Oct1 expression via RNAi reduces the proportion of ALDHHI and dye effluxHI cells, and increasing Oct1 increases the proportion of ALDHHI cells. Normal ALDHHI cells harbor elevated Oct1 protein but not mRNA levels. Functionally, we show that Oct1 promotes tumor engraftment frequency and promotes hematopoietic stem cell engraftment potential in competitive and serial transplants. In addition to previously described Oct1 transcriptional targets, we identify four Oct1 targets associated with the stem cell phenotype. Cumulatively, the data indicate that Oct1 regulates normal and cancer stem cell function.


Antioxidants & Redox Signaling | 2013

Vitamin C Promotes Maturation of T-Cells

Jared Manning; Birgitta Mitchell; Daniel A. Appadurai; Arvind Shakya; Laura Jean Pierce; Hongfang Wang; Vincent K. Nganga; Patrick C. Swanson; James M. May; Dean Tantin; Gerald J. Spangrude

AIMS Vitamin C (ascorbic acid) is thought to enhance immune function, but the mechanisms involved are obscure. We utilized an in vitro model of T-cell maturation to evaluate the role of ascorbic acid in lymphocyte development. RESULTS Ascorbic acid was essential for the developmental progression of mouse bone marrow-derived progenitor cells to functional T-lymphocytes in vitro and also played a role in vivo. Ascorbate-mediated enhancement of T-cell development was lymphoid cell-intrinsic and independent of T-cell receptor (TCR) rearrangement. Analysis of TCR rearrangements demonstrated that ascorbic acid enhanced the selection of functional TCRαβ after the stage of β-selection. Genes encoding the coreceptor CD8 as well as the kinase ZAP70 were upregulated by ascorbic acid. Pharmacologic inhibition of methylation marks on DNA and histones enhanced ascorbate-mediated differentiation, suggesting an epigenetic mechanism of Cd8 gene regulation via active demethylation by ascorbate-dependent Fe(2+) and 2-oxoglutarate-dependent dioxygenases. INNOVATION We speculate that one aspect of gene regulation mediated by ascorbate occurs at the level of chromatin demethylation, mediated by Jumonji C (JmjC) domain enzymes that are known to be reliant upon ascorbate as a cofactor. JmjC domain enzymes are also known to regulate transcription factor activity. These two mechanisms are likely to play key roles in the modulation of immune development and function by ascorbic acid. CONCLUSION Our results provide strong experimental evidence supporting a role for ascorbic acid in T-cell maturation as well as insight into the mechanism of ascorbate-mediated enhancement of immune function.

Collaboration


Dive into the Dean Tantin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aviv Regev

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge