Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where William G. McMaster is active.

Publication


Featured researches published by William G. McMaster.


Circulation Research | 2015

Inflammation, Immunity, and Hypertensive End-Organ Damage

William G. McMaster; Annet Kirabo; Meena S. Madhur; David G. Harrison

For >50 years, it has been recognized that immunity contributes to hypertension. Recent data have defined an important role of T cells and various T cell-derived cytokines in several models of experimental hypertension. These studies have shown that stimuli like angiotensin II, deoxycorticosterone acetate-salt, and excessive catecholamines lead to formation of effector like T cells that infiltrate the kidney and perivascular regions of both large arteries and arterioles. There is also accumulation of monocyte/macrophages in these regions. Cytokines released from these cells, including interleukin-17, interferon-γ, tumor necrosis factorα, and interleukin-6 promote both renal and vascular dysfunction and damage, leading to enhanced sodium retention and increased systemic vascular resistance. The renal effects of these cytokines remain to be fully defined, but include enhanced formation of angiotensinogen, increased sodium reabsorption, and increased renal fibrosis. Recent experiments have defined a link between oxidative stress and immune activation in hypertension. These have shown that hypertension is associated with formation of reactive oxygen species in dendritic cells that lead to formation of gamma ketoaldehydes, or isoketals. These rapidly adduct to protein lysines and are presented by dendritic cells as neoantigens that activate T cells and promote hypertension. Thus, cells of both the innate and adaptive immune system contribute to end-organ damage and dysfunction in hypertension. Therapeutic interventions to reduce activation of these cells may prove beneficial in reducing end-organ damage and preventing consequences of hypertension, including myocardial infarction, heart failure, renal failure, and stroke.


Journal of Clinical Investigation | 2015

Lymphocyte adaptor protein LNK deficiency exacerbates hypertension and end-organ inflammation

Mohamed A. Saleh; William G. McMaster; Jing Wu; Allison E. Norlander; Samuel A. Funt; Salim R. Thabet; Annet Kirabo; Liang Xiao; Wei Chen; Hana A. Itani; Danielle Michell; Tianxiao Huan; Yahua Zhang; Satoshi Takaki; Jens Titze; Daniel Levy; David G. Harrison; Meena S. Madhur

The lymphocyte adaptor protein LNK (also known as SH2B3) is primarily expressed in hematopoietic and endothelial cells, where it functions as a negative regulator of cytokine signaling and cell proliferation. Single-nucleotide polymorphisms in the gene encoding LNK are associated with autoimmune and cardiovascular disorders; however, it is not known how LNK contributes to hypertension. Here, we determined that loss of LNK exacerbates angiotensin II-induced (Ang II-induced) hypertension and the associated renal and vascular dysfunction. At baseline, kidneys from Lnk-/- mice exhibited greater levels of inflammation, oxidative stress, and glomerular injury compared with WT animals, and these parameters were further exacerbated by Ang II infusion. Aortas from Lnk-/- mice exhibited enhanced inflammation, reduced nitric oxide levels, and impaired endothelial-dependent relaxation. Bone marrow transplantation studies demonstrated that loss of LNK in hematopoietic cells is primarily responsible for the observed renal and vascular inflammation and predisposition to hypertension. Ang II infusion increased IFN-γ-producing CD8+ T cells in the spleen and kidneys of Lnk-/- mice compared with WT mice. Moreover, IFN-γ deficiency resulted in blunted hypertension in response to Ang II infusion. Together, these results suggest that LNK is a potential therapeutic target for hypertension and its associated renal and vascular sequela.


Hypertension | 2016

Activation of Human T Cells in Hypertension: Studies of Humanized Mice and Hypertensive Humans

Hana A. Itani; William G. McMaster; Mohamed A. Saleh; Rafal R. Nazarewicz; Tomasz Mikolajczyk; Anna M. Kaszuba; Anna Konior; Aleksander Prejbisz; Andrzej Januszewicz; Allison E. Norlander; Wei Chen; Rachel H. Bonami; Andrew F. Marshall; Greg Poffenberger; Cornelia M. Weyand; Meena S. Madhur; Daniel J. Moore; David G. Harrison; Tomasz J. Guzik

Emerging evidence supports an important role for T cells in the genesis of hypertension. Because this work has predominantly been performed in experimental animals, we sought to determine whether human T cells are activated in hypertension. We used a humanized mouse model in which the murine immune system is replaced by the human immune system. Angiotensin II increased systolic pressure to 162 versus 116 mm Hg for sham-treated animals. Flow cytometry of thoracic lymph nodes, thoracic aorta, and kidney revealed increased infiltration of human leukocytes (CD45+) and T lymphocytes (CD3+ and CD4+) in response to angiotensin II infusion. Interestingly, there was also an increase in the memory T cells (CD3+/CD45RO+) in the aortas and lymph nodes. Prevention of hypertension using hydralazine and hydrochlorothiazide prevented the accumulation of T cells in these tissues. Studies of isolated human T cells and monocytes indicated that angiotensin II had no direct effect on cytokine production by T cells or the ability of dendritic cells to drive T-cell proliferation. We also observed an increase in circulating interleukin-17A producing CD4+ T cells and both CD4+ and CD8+ T cells that produce interferon-&ggr; in hypertensive compared with normotensive humans. Thus, human T cells become activated and invade critical end-organ tissues in response to hypertension in a humanized mouse model. This response likely reflects the hypertensive milieu encountered in vivo and is not a direct effect of the hormone angiotensin II.Emerging evidence supports an important role for T cells in the genesis of hypertension. Because this work has predominantly been performed in experimental animals, we sought to determine whether human T cells are activated in hypertension. We used a humanized mouse model in which the murine immune system is replaced by the human immune system. Angiotensin II increased systolic pressure to 162 versus 116 mm Hg for sham-treated animals. Flow cytometry of thoracic lymph nodes, thoracic aorta, and kidney revealed increased infiltration of human leukocytes (CD45+) and T lymphocytes (CD3+ and CD4+) in response to angiotensin II infusion. Interestingly, there was also an increase in the memory T cells (CD3+/CD45RO+) in the aortas and lymph nodes. Prevention of hypertension using hydralazine and hydrochlorothiazide prevented the accumulation of T cells in these tissues. Studies of isolated human T cells and monocytes indicated that angiotensin II had no direct effect on cytokine production by T cells or the ability of dendritic cells to drive T-cell proliferation. We also observed an increase in circulating interleukin-17A producing CD4+ T cells and both CD4+ and CD8+ T cells that produce interferon-γ in hypertensive compared with normotensive humans. Thus, human T cells become activated and invade critical end-organ tissues in response to hypertension in a humanized mouse model. This response likely reflects the hypertensive milieu encountered in vivo and is not a direct effect of the hormone angiotensin II. # Novelty and Significance {#article-title-34}


Hypertension | 2016

Mitochondrial Cyclophilin D in Vascular Oxidative Stress and Hypertension

Hana A. Itani; Anna Dikalova; William G. McMaster; Rafal R. Nazarewicz; Alfiya Bikineyeva; David G. Harrison; Sergey Dikalov

Vascular superoxide (O˙2-) and inflammation contribute to hypertension. The mitochondria are an important source of O˙2-; however, the regulation of mitochondrial O˙2- and the antihypertensive potential of targeting the mitochondria remain poorly defined. Angiotensin II and inflammatory cytokines, such as interleukin 17A and tumor necrosis factor-&agr; (TNF&agr;) significantly contribute to hypertension. We hypothesized that angiotensin II and cytokines co-operatively induce cyclophilin D (CypD)–dependent mitochondrial O˙2- production in hypertension. We tested whether CypD inhibition attenuates endothelial oxidative stress and reduces hypertension. CypD depletion in CypD−/− mice prevents overproduction of mitochondrial O˙2- in angiotensin II–infused mice, attenuates hypertension by 20 mm Hg, and improves vascular relaxation compared with wild-type C57Bl/6J mice. Treatment of hypertensive mice with the specific CypD inhibitor Sanglifehrin A reduces blood pressure by 28 mm Hg, inhibits production of mitochondrial O˙2- by 40%, and improves vascular relaxation. Angiotensin II–induced hypertension was associated with CypD redox activation by S-glutathionylation, and expression of the mitochondria-targeted H2O2 scavenger, catalase, abolished CypD S-glutathionylation, prevented stimulation mitochondrial O˙2-, and attenuated hypertension. The functional role of cytokine–angiotensin II interplay was confirmed by co-operative stimulation of mitochondrial O˙2- by 3-fold in cultured endothelial cells and impairment of aortic relaxation incubated with combination of angiotensin II, interleukin 17A, and tumor necrosis factor-&agr; which was prevented by CypD depletion or expression of mitochondria-targeted SOD2 and catalase. These data support a novel role of CypD in hypertension and demonstrate that targeting CypD decreases mitochondrial O˙2-, improves vascular relaxation, and reduces hypertension.


Circulation Research | 2017

Sirt3 Impairment and SOD2 Hyperacetylation in Vascular Oxidative Stress and Hypertension

Anna Dikalova; Hana A. Itani; Rafal R. Nazarewicz; William G. McMaster; Charles R. Flynn; Roman V. Uzhachenko; Joshua P. Fessel; Jorge L. Gamboa; David G. Harrison; Sergey Dikalov

Rationale: Clinical studies have shown that Sirt3 (Sirtuin 3) expression declines by 40% by 65 years of age paralleling the increased incidence of hypertension and metabolic conditions further inactivate Sirt3 because of increased NADH (nicotinamide adenine dinucleotide, reduced form) and acetyl-CoA levels. Sirt3 impairment reduces the activity of a key mitochondrial antioxidant enzyme, superoxide dismutase 2 (SOD2) because of hyperacetylation. Objective: In this study, we examined whether the loss of Sirt3 activity increases vascular oxidative stress because of SOD2 hyperacetylation and promotes endothelial dysfunction and hypertension. Methods and Results: Hypertension was markedly increased in Sirt3-knockout (Sirt3−/−) and SOD2-depleted (SOD2+/−) mice in response to low dose of angiotensin II (0.3 mg/kg per day) compared with wild-type C57Bl/6J mice. Sirt3 depletion increased SOD2 acetylation, elevated mitochondrial O2· –, and diminished endothelial nitric oxide. Angiotensin II-induced hypertension was associated with Sirt3 S-glutathionylation, acetylation of vascular SOD2, and reduced SOD2 activity. Scavenging of mitochondrial H2O2 in mCAT mice expressing mitochondria-targeted catalase prevented Sirt3 and SOD2 impairment and attenuated hypertension. Treatment of mice after onset of hypertension with a mitochondria-targeted H2O2 scavenger, mitochondria-targeted hydrogen peroxide scavenger ebselen, reduced Sirt3 S-glutathionylation, diminished SOD2 acetylation, and reduced blood pressure in wild-type but not in Sirt3−/− mice, whereas an SOD2 mimetic, (2-[2,2,6,6-tetramethylpiperidin-1-oxyl-4-ylamino]-2-oxoethyl) triphenylphosphonium (mitoTEMPO), reduced blood pressure and improved vasorelaxation both in Sirt3−/− and wild-type mice. SOD2 acetylation had an inverse correlation with SOD2 activity and a direct correlation with the severity of hypertension. Analysis of human subjects with essential hypertension showed 2.6-fold increase in SOD2 acetylation and 1.4-fold decrease in Sirt3 levels, whereas SOD2 expression was not affected. Conclusions: Our data suggest that diminished Sirt3 expression and redox inactivation of Sirt3 lead to SOD2 inactivation and contributes to the pathogenesis of hypertension.


Circulation Research | 2016

BMP Antagonist Gremlin 2 Limits Inflammation After Myocardial Infarction

Lehanna N. Sanders; John A. Schoenhard; Mohamed A. Saleh; Amrita Mukherjee; Sergey Ryzhov; William G. McMaster; Kristof Nolan; Richard J. Gumina; Thomas B. Thompson; Mark A. Magnuson; David G. Harrison; Antonis K. Hatzopoulos

RATIONALE We have recently shown that the bone morphogenetic protein (BMP) antagonist Gremlin 2 (Grem2) is required for early cardiac development and cardiomyocyte differentiation. Our initial studies discovered that Grem2 is strongly induced in the adult heart after experimental myocardial infarction (MI). However, the function of Grem2 and BMP-signaling inhibitors after cardiac injury is currently unknown. OBJECTIVE To investigate the role of Grem2 during cardiac repair and assess its potential to improve ventricular function after injury. METHODS AND RESULTS Our data show that Grem2 is transiently induced after MI in peri-infarct area cardiomyocytes during the inflammatory phase of cardiac tissue repair. By engineering loss- (Grem2(-/-)) and gain- (TG(Grem2)) of-Grem2-function mice, we discovered that Grem2 controls the magnitude of the inflammatory response and limits infiltration of inflammatory cells in peri-infarct ventricular tissue, improving cardiac function. Excessive inflammation in Grem2(-/-) mice after MI was because of overactivation of canonical BMP signaling, as proven by the rescue of the inflammatory phenotype through administration of the canonical BMP inhibitor, DMH1. Furthermore, intraperitoneal administration of Grem2 protein in wild-type mice was sufficient to reduce inflammation after MI. Cellular analyses showed that BMP2 acts with TNFα to induce expression of proinflammatory proteins in endothelial cells and promote adhesion of leukocytes, whereas Grem2 specifically inhibits the BMP2 effect. CONCLUSIONS Our results indicate that Grem2 provides a molecular barrier that controls the magnitude and extent of inflammatory cell infiltration by suppressing canonical BMP signaling, thereby providing a novel mechanism for limiting the adverse effects of excessive inflammation after MI.


Hypertension | 2016

Activation of Human T Cells in HypertensionNovelty and Significance

Hana A. Itani; William G. McMaster; Mohamed A. Saleh; Rafal R. Nazarewicz; Tomasz Mikolajczyk; Anna M. Kaszuba; Anna Konior; Aleksander Prejbisz; Andrzej Januszewicz; Allison E. Norlander; Wei Chen; Rachel H. Bonami; Andrew F. Marshall; Greg Poffenberger; Cornelia M. Weyand; Meena S. Madhur; Daniel J. Moore; David G. Harrison; Tomasz J. Guzik

Emerging evidence supports an important role for T cells in the genesis of hypertension. Because this work has predominantly been performed in experimental animals, we sought to determine whether human T cells are activated in hypertension. We used a humanized mouse model in which the murine immune system is replaced by the human immune system. Angiotensin II increased systolic pressure to 162 versus 116 mm Hg for sham-treated animals. Flow cytometry of thoracic lymph nodes, thoracic aorta, and kidney revealed increased infiltration of human leukocytes (CD45+) and T lymphocytes (CD3+ and CD4+) in response to angiotensin II infusion. Interestingly, there was also an increase in the memory T cells (CD3+/CD45RO+) in the aortas and lymph nodes. Prevention of hypertension using hydralazine and hydrochlorothiazide prevented the accumulation of T cells in these tissues. Studies of isolated human T cells and monocytes indicated that angiotensin II had no direct effect on cytokine production by T cells or the ability of dendritic cells to drive T-cell proliferation. We also observed an increase in circulating interleukin-17A producing CD4+ T cells and both CD4+ and CD8+ T cells that produce interferon-&ggr; in hypertensive compared with normotensive humans. Thus, human T cells become activated and invade critical end-organ tissues in response to hypertension in a humanized mouse model. This response likely reflects the hypertensive milieu encountered in vivo and is not a direct effect of the hormone angiotensin II.Emerging evidence supports an important role for T cells in the genesis of hypertension. Because this work has predominantly been performed in experimental animals, we sought to determine whether human T cells are activated in hypertension. We used a humanized mouse model in which the murine immune system is replaced by the human immune system. Angiotensin II increased systolic pressure to 162 versus 116 mm Hg for sham-treated animals. Flow cytometry of thoracic lymph nodes, thoracic aorta, and kidney revealed increased infiltration of human leukocytes (CD45+) and T lymphocytes (CD3+ and CD4+) in response to angiotensin II infusion. Interestingly, there was also an increase in the memory T cells (CD3+/CD45RO+) in the aortas and lymph nodes. Prevention of hypertension using hydralazine and hydrochlorothiazide prevented the accumulation of T cells in these tissues. Studies of isolated human T cells and monocytes indicated that angiotensin II had no direct effect on cytokine production by T cells or the ability of dendritic cells to drive T-cell proliferation. We also observed an increase in circulating interleukin-17A producing CD4+ T cells and both CD4+ and CD8+ T cells that produce interferon-γ in hypertensive compared with normotensive humans. Thus, human T cells become activated and invade critical end-organ tissues in response to hypertension in a humanized mouse model. This response likely reflects the hypertensive milieu encountered in vivo and is not a direct effect of the hormone angiotensin II. # Novelty and Significance {#article-title-34}


JCI insight | 2018

LNK deficiency promotes acute aortic dissection and rupture

Fanny Laroumanie; Arina Korneva; Matthew R. Bersi; Matthew R. Alexander; Liang Xiao; Xue Zhong; Justin P. Van Beusecum; Yuhan Chen; Mohamed A. Saleh; William G. McMaster; Kyle A. Gavulic; Bethany L. Dale; Shilin Zhao; Yan Guo; Yu Shyr; Daniel S. Perrien; Nancy J. Cox; John A. Curci; Jay D. Humphrey; Meena S. Madhur

Aortic dissection (AD) is a life-threatening vascular disease with limited treatment strategies. Here, we show that loss of the GWAS-identified SH2B3 gene, encoding lymphocyte adaptor protein LNK, markedly increases susceptibility to acute AD and rupture in response to angiotensin (Ang) II infusion. As early as day 3 following Ang II infusion, prior to the development of AD, Lnk-/- aortas display altered mechanical properties, increased elastin breaks, collagen thinning, enhanced neutrophil accumulation, and increased MMP-9 activity compared with WT mice. Adoptive transfer of Lnk-/- leukocytes into Rag1-/- mice induces AD and rupture in response to Ang II, demonstrating that LNK deficiency in hematopoietic cells plays a key role in this disease. Interestingly, treatment with doxycycline prevents the early accumulation of aortic neutrophils and significantly reduces the incidence of AD and rupture. PrediXcan analysis in a biobank of more than 23,000 individuals reveals that decreased expression of SH2B3 is significantly associated with increased frequency of AD-related phenotypes (odds ratio 0.81). Thus, we identified a role for LNK in the pathology of AD in experimental animals and humans and describe a new model that can be used to inform both inherited and acquired forms of this disease.


The Thoracic & Cardiovascular Surgeon Reports | 2017

Gastrointestinal Bleed from a Left Ventricle to Colonic Interposition Graft Fistula following an Esophagectomy

Abdulwahab Al Khalifa; William G. McMaster; Colin Schieman; Richard P. Whitlock; Christopher Ricci; Matthew R. Danter

Colonic interposition grafts are commonly used as an esophageal conduit following esophageal resection. Significant morbidity is associated with this reconstruction due to the nature of the operation. Many of the complications associated with this procedure have clear management strategies; however, there is a paucity of data when it comes to managing rare complications. In this report, we discuss the presentation, operative intervention, and postoperative care of a patient who presented with a left ventricle to esophageal colonic interposition graft fistula.


Hypertension | 2016

Activation of Human T Cells in Hypertension

Hana A. Itani; William G. McMaster; Mohamed A. Saleh; Rafal R. Nazarewicz; Tomasz Mikolajczyk; Anna M. Kaszuba; Anna Konior; Aleksander Prejbisz; Andrzej Januszewicz; Allison E. Norlander; Wei Chen; Rachel H. Bonami; Andrew F. Marshall; Greg Poffenberger; Cornelia M. Weyand; Meena S. Madhur; Daniel J. Moore; David G. Harrison; Tomasz J. Guzik

Emerging evidence supports an important role for T cells in the genesis of hypertension. Because this work has predominantly been performed in experimental animals, we sought to determine whether human T cells are activated in hypertension. We used a humanized mouse model in which the murine immune system is replaced by the human immune system. Angiotensin II increased systolic pressure to 162 versus 116 mm Hg for sham-treated animals. Flow cytometry of thoracic lymph nodes, thoracic aorta, and kidney revealed increased infiltration of human leukocytes (CD45+) and T lymphocytes (CD3+ and CD4+) in response to angiotensin II infusion. Interestingly, there was also an increase in the memory T cells (CD3+/CD45RO+) in the aortas and lymph nodes. Prevention of hypertension using hydralazine and hydrochlorothiazide prevented the accumulation of T cells in these tissues. Studies of isolated human T cells and monocytes indicated that angiotensin II had no direct effect on cytokine production by T cells or the ability of dendritic cells to drive T-cell proliferation. We also observed an increase in circulating interleukin-17A producing CD4+ T cells and both CD4+ and CD8+ T cells that produce interferon-&ggr; in hypertensive compared with normotensive humans. Thus, human T cells become activated and invade critical end-organ tissues in response to hypertension in a humanized mouse model. This response likely reflects the hypertensive milieu encountered in vivo and is not a direct effect of the hormone angiotensin II.Emerging evidence supports an important role for T cells in the genesis of hypertension. Because this work has predominantly been performed in experimental animals, we sought to determine whether human T cells are activated in hypertension. We used a humanized mouse model in which the murine immune system is replaced by the human immune system. Angiotensin II increased systolic pressure to 162 versus 116 mm Hg for sham-treated animals. Flow cytometry of thoracic lymph nodes, thoracic aorta, and kidney revealed increased infiltration of human leukocytes (CD45+) and T lymphocytes (CD3+ and CD4+) in response to angiotensin II infusion. Interestingly, there was also an increase in the memory T cells (CD3+/CD45RO+) in the aortas and lymph nodes. Prevention of hypertension using hydralazine and hydrochlorothiazide prevented the accumulation of T cells in these tissues. Studies of isolated human T cells and monocytes indicated that angiotensin II had no direct effect on cytokine production by T cells or the ability of dendritic cells to drive T-cell proliferation. We also observed an increase in circulating interleukin-17A producing CD4+ T cells and both CD4+ and CD8+ T cells that produce interferon-γ in hypertensive compared with normotensive humans. Thus, human T cells become activated and invade critical end-organ tissues in response to hypertension in a humanized mouse model. This response likely reflects the hypertensive milieu encountered in vivo and is not a direct effect of the hormone angiotensin II. # Novelty and Significance {#article-title-34}

Collaboration


Dive into the William G. McMaster's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rafal R. Nazarewicz

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna Dikalova

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Sergey Dikalov

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Wei Chen

Vanderbilt University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge