Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where William H. Schlesinger is active.

Publication


Featured researches published by William H. Schlesinger.


Ecological Applications | 1997

HUMAN ALTERATION OF THE GLOBAL NITROGEN CYCLE: SOURCES AND CONSEQUENCES

Peter M. Vitousek; John D. Aber; Robert W. Howarth; Gene E. Likens; Pamela A. Matson; David W. Schindler; William H. Schlesinger; David Tilman

Nitrogen is a key element controlling the species composition, diversity, dynamics, and functioning of many terrestrial, freshwater, and marine ecosystems. Many of the original plant species living in these ecosystems are adapted to, and function optimally in, soils and solutions with low levels of available nitrogen. The growth and dynamics of herbivore populations, and ultimately those of their predators, also are affected by N. Agriculture, combustion of fossil fuels, and other human activities have altered the global cycle of N substantially, generally increasing both the availability and the mobility of N over large regions of Earth. The mobility of N means that while most deliberate applications of N occur locally, their influence spreads regionally and even globally. Moreover, many of the mobile forms of N themselves have environmental consequences. Although most nitrogen inputs serve human needs such as agricultural production, their environmental conse- quences are serious and long term. Based on our review of available scientific evidence, we are certain that human alterations of the nitrogen cycle have: 1) approximately doubled the rate of nitrogen input into the terrestrial nitrogen cycle, with these rates still increasing; 2) increased concentrations of the potent greenhouse gas N 2O globally, and increased concentrations of other oxides of nitrogen that drive the formation of photochemical smog over large regions of Earth; 3) caused losses of soil nutrients, such as calcium and potassium, that are essential for the long-term maintenance of soil fertility; 4) contributed substantially to the acidification of soils, streams, and lakes in several regions; and 5) greatly increased the transfer of nitrogen through rivers to estuaries and coastal oceans. In addition, based on our review of available scientific evidence we are confident that human alterations of the nitrogen cycle have: 6) increased the quantity of organic carbon stored within terrestrial ecosystems; 7) accelerated losses of biological diversity, especially losses of plants adapted to efficient use of nitrogen, and losses of the animals and microorganisms that depend on them; and 8) caused changes in the composition and functioning of estuarine and nearshore ecosystems, and contributed to long-term declines in coastal marine fisheries.


Science | 1990

Biological Feedbacks in Global Desertification

William H. Schlesinger; James F. Reynolds; Gary L. Cunningham; Laura Foster Huenneke; Wesley M. Jarrell; Ross A. Virginia; Walter G. Whitford

Studies of ecosystem processes on the Jornada Experimental Range in southern New Mexico suggest that longterm grazing of semiarid grasslands leads to an increase in the spatial and temporal heterogeneity of water, nitrogen, and other soil resources. Heterogeneity of soil resources promotes invasion by desert shrubs, which leads to a further localization of soil resources under shrub canopies. In the barren area between shrubs, soil fertility is lost by erosion and gaseous emissions. This positive feedback leads to the desertification of formerly productive land in southern New Mexico and in other regions, such as the Sahel. Future desertification is likely to be exacerbated by global climate warming and to cause significant changes in global biogeochemical cycles.


Biogeochemistry | 2000

Soil respiration and the global carbon cycle

William H. Schlesinger; Jeffrey A. Andrews

Soil respiration is the primary path by which CO2fixed by land plants returns to the atmosphere. Estimated at approximately 75 × 1015gC/yr, this large natural flux is likely to increase due changes in the Earths condition. The objective of this paper is to provide a brief scientific review for policymakers who are concerned that changes in soil respiration may contribute to the rise in CO2in Earths atmosphere. Rising concentrations of CO2in the atmosphere will increase the flux of CO2from soils, while simultaneously leaving a greater store of carbon in the soil. Traditional tillage cultivation and rising temperature increase the flux of CO2from soils without increasing the stock of soil organic matter. Increasing deposition of nitrogen from the atmosphere may lead to the sequestration of carbon in vegetation and soils. The response of the land biosphere to simultaneous changes in all of these factors is unknown, but a large increase in the soil carbon pool seems unlikely to moderate the rise in atmospheric CO2during the next century.


Global Biogeochemical Cycles | 1995

Nitrogen fixation: Anthropogenic enhancement‐environmental response

James N. Galloway; William H. Schlesinger; Hiram Levy; Anthony F. Michaels; Jerald L. Schnoor

In the absence of human activities, biotic fixation is the primary source of reactive N, providing about 90–130 Tg N yr−1 (Tg = 1012 g) on the continents. Human activities have resulted in the fixation of an additional ≈140 Tg N yr−1 by energy production (≈20 Tg N yr−1 ), fertilizer production (≈80 Tg N yr−1), and cultivation of crops (e.g., legumes, rice) (≈40 Tg N yr−1 ). We can only account for part of this anthropogenic N. N2O is accumulating in the atmosphere at a rate of 3 Tg N yr−1. Coastal oceans receive another 41 Tg N yr−1 via rivers, much of which is buried or denitrified. Open oceans receive 18 Tg N yr−1 by atmospheric deposition, which is incorporated into oceanic N pools (e.g., NO3−, N2). The remaining 80 Tg N yr−1 are either retained on continents in groundwater, soils, or vegetation or denitrified to N2. Field studies and calculations indicate that uncertainties about the size of each sink can account for the remaining anthropogenic N. Thus although anthropogenic N is clearly accumulating on continents, we do not know rates of individual processes. We predict the anthropogenic N-fixation rate will increase by about 60% by the year 2020, primarily due to increased fertilizer use and fossil-fuel combustion. About two-thirds of the increase will occur in Asia, which by 2020 will account for over half of the global anthropogenic N fixation.


Frontiers in Ecology and the Environment | 2011

A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2

Elizabeth Mcleod; Gail L. Chmura; Steven Bouillon; Rodney Salm; Mats Björk; Carlos M. Duarte; Catherine E. Lovelock; William H. Schlesinger; Brian R. Silliman

Recent research has highlighted the valuable role that coastal and marine ecosystems play in sequestering carbon dioxide (CO(2)). The carbon (C) sequestered in vegetated coastal ecosystems, specifically mangrove forests, seagrass beds, and salt marshes, has been termed blue carbon. Although their global area is one to two orders of magnitude smaller than that of terrestrial forests, the contribution of vegetated coastal habitats per unit area to long-term C sequestration is much greater, in part because of their efficiency in trapping suspended matter and associated organic C during tidal inundation. Despite the value of mangrove forests, seagrass beds, and salt marshes in sequestering C, and the other goods and services they provide, these systems are being lost at critical rates and action is urgently needed to prevent further degradation and loss. Recognition of the C sequestration value of vegetated coastal ecosystems provides a strong argument for their protection and restoration; however, it is necessary to improve scientific understanding of the underlying mechanisms that control C sequestration in these ecosystems. Here, we identify key areas of uncertainty and specific actions needed to address them.


Geoderma | 1995

A literature review and evaluation of the. Hedley fractionation: Applications to the biogeochemical cycle of soil phosphorus in natural ecosystems

Anne Fernald Cross; William H. Schlesinger

Abstract The Hedley fractionation recognizes plant-available forms (Resin Pi, Bicarb Pi, and Bicarb Po) and refractory forms (NaOH Pi, NaOH Po, sonic Pi, sonic Po, HCl Pi, Residual P) of soil phosphorus. This updated survey of the recent literature shows that the sequential fractionation proposed by Hedley et al. can also be used to separate forms of organically bound soil phosphorus from the geochemically bound fractions. We consider that biological P includes all the extracted organic fractions (Bicarb Po, NaOH o, sonic Po) and geochemical P includes the remaining fractions (Resin Pi, Bicarb Pi, NaOH Pi, sonic Pi, HCl Pi) and the Po and Pi in the Residual fraction. Data from the Hedley fractionation suggest that the contribution of geochemical versus biological processes to soil phosphorus availability varies with pedogenesis. The pool of primary phosphate declines and the NaOH and sonicated-NaOH phosphorus fractions increase as phosphorus becomes geochemically fixed to the iron and aluminum oxides in more highly weathered soils. The sum of organic-P fractions — biological P — is an increasing proportion of total available P as a function of soil development. Therefore, the Hedley fractionation provides a valuable index of the relative importance of biological processes to soil phosphorus content across a soil weathering gradient.


Ecosystems | 2006

Reconciling carbon-cycle concepts, terminology, and methods

F. S. Chapin; George M. Woodwell; James T. Randerson; Edward B. Rastetter; Gary M. Lovett; Dennis D. Baldocchi; Deborah A. Clark; Mark E. Harmon; David S. Schimel; Riccardo Valentini; Christian Wirth; John D. Aber; Jonathan J. Cole; Michael L. Goulden; Jennifer W. Harden; Martin Heimann; Robert W. Howarth; Pamela A. Matson; A. D. McGuire; Jerry M. Melillo; Harold A. Mooney; Jason C. Neff; R. A. Houghton; Michael L. Pace; Michael G. Ryan; Steven W. Running; Osvaldo E. Sala; William H. Schlesinger; Ernst-Detlef Schulze

Recent projections of climatic change have focused a great deal of scientific and public attention on patterns of carbon (C) cycling as well as its controls, particularly the factors that determine whether an ecosystem is a net source or sink of atmospheric carbon dioxide (CO2). Net ecosystem production (NEP), a central concept in C-cycling research, has been used by scientists to represent two different concepts. We propose that NEP be restricted to just one of its two original definitions—the imbalance between gross primary production (GPP) and ecosystem respiration (ER). We further propose that a new term—net ecosystem carbon balance (NECB)—be applied to the net rate of C accumulation in (or loss from [negative sign]) ecosystems. Net ecosystem carbon balance differs from NEP when C fluxes other than C fixation and respiration occur, or when inorganic C enters or leaves in dissolved form. These fluxes include the leaching loss or lateral transfer of C from the ecosystem; the emission of volatile organic C, methane, and carbon monoxide; and the release of soot and CO2 from fire. Carbon fluxes in addition to NEP are particularly important determinants of NECB over long time scales. However, even over short time scales, they are important in ecosystems such as streams, estuaries, wetlands, and cities. Recent technological advances have led to a diversity of approaches to the measurement of C fluxes at different temporal and spatial scales. These approaches frequently capture different components of NEP or NECB and can therefore be compared across scales only by carefully specifying the fluxes included in the measurements. By explicitly identifying the fluxes that comprise NECB and other components of the C cycle, such as net ecosystem exchange (NEE) and net biome production (NBP), we can provide a less ambiguous framework for understanding and communicating recent changes in the global C cycle.


Proceedings of the National Academy of Sciences of the United States of America | 2009

On the fate of anthropogenic nitrogen

William H. Schlesinger

This article provides a synthesis of literature values to trace the fate of 150 Tg/yr anthropogenic nitrogen applied by humans to the Earths land surface. Approximately 9 TgN/yr may be accumulating in the terrestrial biosphere in pools with residence times of ten to several hundred years. Enhanced fluvial transport of nitrogen in rivers and percolation to groundwater accounts for ≈35 and 15 TgN/yr, respectively. Greater denitrification in terrestrial soils and wetlands may account for the loss of ≈17 TgN/yr from the land surface, calculated by a compilation of data on the fraction of N2O emitted to the atmosphere and the current global rise of this gas in the atmosphere. A recent estimate of atmospheric transport of reactive nitrogen from land to sea (NOx and NHx) accounts for 48 TgN/yr. The total of these enhanced sinks, 124 TgN/yr, is less than the human-enhanced inputs to the land surface, indicating areas of needed additional attention to global nitrogen biogeochemistry. Policy makers should focus on increasing nitrogen-use efficiency in fertilization, reducing transport of reactive N to rivers and groundwater, and maximizing denitrification to its N2 endproduct.


Nature | 2001

Limited carbon storage in soil and litter of experimental forest plots under increased atmospheric CO2.

William H. Schlesinger; John Lichter

The current rise in atmospheric CO2 concentration is thought to be mitigated in part by carbon sequestration within forest ecosystems, where carbon can be stored in vegetation or soils. The storage of carbon in soils is determined by the fraction that is sequestered in persistent organic materials, such as humus. In experimental forest plots of loblolly pine (Pinus taeda) exposed to high CO2 concentrations, nearly half of the carbon uptake is allocated to short-lived tissues, largely foliage. These tissues fall to the ground and decompose, normally contributing only a small portion of their carbon content to refractory soil humic materials. Such findings call into question the role of soils as long-term carbon sinks, and show the need for a better understanding of carbon cycling in forest soils. Here we report a significant accumulation of carbon in the litter layer of experimental forest plots after three years of growth at increased CO2 concentrations (565 µl l-1). But fast turnover times of organic carbon in the litter layer (of about three years) appear to constrain the potential size of this carbon sink. Given the observation that carbon accumulation in the deeper mineral soil layers was absent, we suggest that significant, long-term net carbon sequestration in forest soils is unlikely.


Biogeochemistry | 1998

Plant-soil interactions in deserts

William H. Schlesinger; Adrienne M. Pilmanis

Geostatistical analyses show that the distribution of soil N, P and K is strongly associated with the presence of shrubs in desert habitats. Shrubs concentrate the biogeochemical cycle of these elements in ‘islands of fertility’ that are localized beneath their canopies, while adjacent barren, intershrub spaces are comparatively devoid of biotic activity. Both physical and biological processes are involved in the formation of shrub islands. Losses of semiarid grassland in favor of invading shrubs initiate these changes in the distribution of soil nutrients, which may promote the further invasion and persistence of shrubs and cause potential feedbacks between desertification and the Earths climate system.

Collaboration


Dive into the William H. Schlesinger's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roser Matamala

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Viney P. Aneja

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gene E. Likens

University of Connecticut

View shared research outputs
Researchain Logo
Decentralizing Knowledge