William J. Lemon
Ohio State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by William J. Lemon.
Proceedings of the National Academy of Sciences of the United States of America | 2001
Ying Huang; Manju Prasad; William J. Lemon; Heather Hampel; Fred A. Wright; Karl Kornacker; Virginia A. LiVolsi; Wendy L. Frankel; Richard T. Kloos; Charis Eng; Natalia S. Pellegata; Albert de la Chapelle
Papillary thyroid carcinoma (PTC) is clinically heterogeneous. Apart from an association with ionizing radiation, the etiology and molecular biology of PTC is poorly understood. We used oligo-based DNA arrays to study the expression profiles of eight matched pairs of normal thyroid and PTC tissues. Additional PTC tumors and other tissues were studied by reverse transcriptase–PCR and immunohistochemistry. The PTCs showed concordant expression of many genes and distinct clustered profiles. Genes with increased expression in PTC included many encoding adhesion and extracellular matrix proteins. Expression was increased in 8/8 tumors for 24 genes and in 7/8 tumors for 22 genes. Among these genes were several previously known to be overexpressed in PTC, such as MET, LGALS3, KRT19, DPP4, MDK, TIMP1, and FN1. The numerous additional genes include CITED1, CHI3L1, ODZ1, N33, SFTPB, and SCEL. Reverse transcriptase–PCR showed high expression of CITED1, CHI3L1, ODZ1, and SCEL in 6/6 additional PTCs. Immunohistochemical analysis detected CITED1 and SFTPB in 49/52 and 39/52 PTCs, respectively, but not in follicular thyroid carcinoma and normal thyroid tissue. Genes underexpressed in PTC included tumor suppressors, thyroid function-related proteins, and fatty acid binding proteins. Expression was decreased in 7/8 tumors for eight genes and decreased in 6/8 tumors for 19 genes. We conclude that, despite its clinical heterogeneity, PTC is characterized by consistent and specific molecular changes. These findings reveal clues to the molecular pathways involved in PTC and may provide biomarkers for clinical use.
Genome Biology | 2001
Fred A. Wright; William J. Lemon; Wei D. Zhao; Russell Sears; Degen Zhuo; Jian Ping Wang; Hee-Yung Yang; Troy Baer; Don Stredney; Joe Spitzner; Al Stutz; Ralf Krahe; Bo Yuan
BackgroundThe recent draft assembly of the human genome provides a unified basis for describing genomic structure and function. The draft is sufficiently accurate to provide useful annotation, enabling direct observations of previously inferred biological phenomena.ResultsWe report here a functionally annotated human gene index placed directly on the genome. The index is based on the integration of public transcript, protein, and mapping information, supplemented with computational prediction. We describe numerous global features of the genome and examine the relationship of various genetic maps with the assembly. In addition, initial sequence analysis reveals highly ordered chromosomal landscapes associated with paralogous gene clusters and distinct functional compartments. Finally, these annotation data were synthesized to produce observations of gene density and number that accord well with historical estimates. Such a global approach had previously been described only for chromosomes 21 and 22, which together account for 2.2% of the genome.ConclusionsWe estimate that the genome contains 65,000-75,000 transcriptional units, with exon sequences comprising 4%. The creation of a comprehensive gene index requires the synthesis of all available computational and experimental evidence.
Cancer Research | 2004
Yian Wang; Zhongqiu Zhang; Ying Yan; William J. Lemon; Marie C. LaRegina; Carl Morrison; Ronald A. Lubet; Ming You
Lung cancer, primarily associated with tobacco use, is the leading cause of cancer morbidity and mortality in the United States. Squamous cell carcinoma (SCC) is one of the four major histological types of lung cancer. Although there are several established models for lung adenoma and adenocarcinomas, there is no well-established mouse model for lung SCC. We treated eight different inbred strains of mice with N-nitroso-tris-chloroethylurea by skin painting and found that this regimen induced lung SCCs in five strains of mouse (SWR/J, NIH Swiss, A/J, BALB/cJ, and FVB/J) but not in the others (AKR/J, 129/svJ, and C57BL/6J). Mouse lung SCCs have similar histopathological features and keratin staining to human SCC. Moreover, a wide spectrum of abnormal lung squamous phenotypes including hyperplasia, metaplasia, carcinoma in situ, and invasive carcinoma, were observed. There are strain-specific differences in susceptibility to Lscc induction by N-nitroso-tris-chloroethylurea with NIH Swiss, A/J, and SWR/J mice developing scores of SCCs whereas the resistant strains AKR/J, 129/svJ, and C57BL/6J failed to develop any SCCs. FVB/J and BALB/cJ mice had an intermediate response. We conducted whole-genome linkage disequilibrium analysis in seven strains of mice, divided into three phenotype categories of susceptibility, using Fisher’s exact test applied to 6,128 markers in publically available databases. Three markers were found significantly associated with susceptibility to SCC with the P < 0.05. They were D1Mit169, D3Mit178, and D18Mit91. Interestingly, none of these sites overlap with the major susceptibility loci associated with lung adenoma/adenocarcinoma development in mice. The mouse SCC described here is highly significant for preclinical studies of lung cancer chemopreventive agents because most human trials have been conducted against precancerous lesions for SCC. Furthermore, this model can be used in determining genetic modifiers that contribute to susceptibility or resistance to lung SCC development.
Oncogene | 2004
Allison E Bonner; William J. Lemon; Theodora R. Devereux; Ronald A. Lubet; Ming You
We have performed oligonucleotide array analysis on various murine lung tissues [normal lungs, lung adenomas, and lung adenocarcinomas (ACs)] using Affymetrix U74Av2 GeneChips to examine the complex genetic changes occurring during lung carcinogenesis. Analysis yielded 20 novel genes differentially expressed in both lung adenomas and ACs versus normal lungs, including the tumor suppressor APC2 and the oncogene Ros 1. In addition, 50 genes were found to be differentially expressed in lung adenomas versus lung ACs, including the differentiation factor Hox C6, the oncogene Ets 2, and the Ras nuclear transport factor, nuclear transport factor 2. To understand the potential relationship between genes expressed in murine lung tumors and its relationship to altered gene expression observed during embryogenesis and postnatal development, tissues from embryonic lungs and from lungs of mice up to 4 weeks following birth were examined using Affymetrix U74Av2 GeneChips. From this analysis, approximately 1300 genes were determined to exhibit differential expression in fetal lung versus postnatal lung. When we compared lung adenomas, lung ACs, and normal lung parenchyma, 24 developmentally regulated genes were found aberrantly expressed in lung tumors; these included the cell cycle control factor CDC5, the cellular differentiation factor TEA domain 4, and the proapoptotic factor BNIP 2. Finally, we compared the murine lung tumor gene expression data to the expression of genes in human lung cancer, in order to assess the relevance of murine lung cancer models in the study of human AC formation. When the 17 human lung ACs and six human lung large cell carcinomas were examined, it was found that 13 of the 17 human lung ACs clustered tightly together in a pattern that was different from the remaining four human lung ACs and six large cell carcinomas, which exhibited a different pattern. Interestingly, the mouse lung adenomas appeared similar to 13 clustered ACs, while mouse lung ACs appeared more similar in pattern to the group consisting of four ACs and six large-cell carcinomas (LCCs). Nevertheless, when compared with the combined human ACs, 39 genes with similar expression changes in murine lung tumors and human ACs/LCCs were identified, such as the oncogene-related BCL7B, the cell cycle regulator CDK4, and the proapoptotic Endophilin B1. Overall, we have determined, for the first time, the expression profiles during murine lung tumor progression and have established, at the molecular level, an association between murine lung tumorigenesis and lung development. We have also attempted to compare the expression profiles found in mouse lung cancers and those in human lung ACs.
Journal of Medical Genetics | 2003
Allison E Bonner; William J. Lemon; Ming You
Oligonucleotide array based analysis was conducted to examine the temporal pattern of gene expression across the various stages of lung development to identify regulatory pathways at key developmental time points. Whole embryo total RNA or embryonic lung total RNA was harvested from A/J mice at seven developmental stages. To investigate changes in gene expression during lung development, four samples from each stage were examined using Affymetrix U74Av2 murine oligonucleotide microarrays. From the over 12 000 genes and ESTs represented on the array, 1346 genes and ESTs were identified as having a significant change in expression between at least one time point and the others (p<0.001, Kruskal-Wallis test). Within this group of ∼1300 genes, four patterns of expression were seen: (1) upregulation during the embryonic period of development (up-down); (2) upregulation during the postnatal period of lung development (down-up) and (3) fluctuating expression, up initially, down for one or more time points, and then up again (up-down-up); and (4) vice versa (down-up-down). Expression patterns of genes previously reported to be involved in pulmonary development were also examined. Using the pathway visualisation tool, GenMapp, at least three regulatory pathways were found to contain clusters of differentially expressed genes: Wnt signalling, cell cycle, and apoptosis. Furthermore, we have shown that many of the genes involved in lung development are either known oncogenes or tumour suppressor genes altered in lung cancer, such as Cyr61, Rassf1a, and Dutt1/Robo1, or putative lung cancer genes. In addition, the genes identified pertinent to early development may also serve as candidate susceptibility genes for various inherited lung cancer disorders as well as for various heritable disorders of lung development. These results will contribute to our understanding of novel aspects of the regulatory machinery for embryonic lung development and of the genes involved in lung tumorigenesis.
Genome Biology | 2003
William J. Lemon; Sandya Liyanarachchi; Ming You
Logit-t employs a logit-transformation for normalization followed by statistical testing at the probe-level. Using four publicly-available datasets, together providing 2,710 known positive incidences of differential expression and 2,913,813 known negative incidences, performance of statistical tests were: Logit-t provided 75% positive-predictive value, compared with 5% for Affymetrix Microarray Suite 5, 6% for dChip perfect match (PM)-only, and 9% for Robust Multi-array Analysis at the p < 0.01 threshold. Logit-t provided 70% sensitivity, Microarray Suite 5 provided 46%, dChip provided 53% and Robust Multi-array Analysis provided 63%.
Infection and Immunity | 2003
Kimmo Virtaneva; Morag R. Graham; Stephen F. Porcella; Nancy P. Hoe; Hua Su; Edward A. Graviss; Tracie J. Gardner; James E. Allison; William J. Lemon; John R. Bailey; Michael J. Parnell; James M. Musser
ABSTRACT The molecular mechanisms used by group A Streptococcus (GAS) to survive on the host mucosal surface and cause acute pharyngitis are poorly understood. To provide new information about GAS host-pathogen interactions, we used real-time reverse transcription-PCR (RT-PCR) to analyze transcripts of 17 GAS genes in throat swab specimens taken from 18 pediatric patients with pharyngitis. The expression of known and putative virulence genes and regulatory genes (including genes in seven two-component regulatory systems) was studied. Several known and previously uncharacterized GAS virulence gene regulators were highly expressed compared to the constitutively expressed control gene proS. To examine in vivo gene transcription in a controlled setting, three cynomolgus macaques were infected with strain MGAS5005, an organism that is genetically representative of most serotype M1 strains recovered from pharyngitis and invasive disease episodes in North America and Western Europe. These three animals developed clinical signs and symptoms of GAS pharyngitis and seroconverted to several GAS extracellular proteins. Real-time RT-PCR analysis of throat swab material collected at intervals throughout a 12-day infection protocol indicated that expression profiles of a subset of GAS genes accurately reflected the profiles observed in the human pediatric patients. The results of our study demonstrate that analysis of in vivo GAS gene expression is feasible in throat swab specimens obtained from infected human and nonhuman primates. In addition, we conclude that the cynomolgus macaque is a useful nonhuman primate model for the study of molecular events contributing to acute pharyngitis caused by GAS.
Bioinformatics | 2002
William J. Lemon; Jeffrey Palatini; Ralf Krahe; Fred A. Wright
MOTIVATION Oligonucleotide expression arrays exhibit systematic and reproducible variation produced by the multiple distinct probes used to represent a gene. Recently, a gene expression index has been proposed that explicitly models probe effects, and provides improved fits of hybridization intensity for arrays containing perfect match (PM) and mismatch (MM) probe pairs. RESULTS Here we use a combination of analytical arguments and empirical data to show directly that the estimates provided by model-based expression indexes are superior to those provided by commercial software. The improvement is greatest for genes in which probe effects vary substantially, and modeling the PM and MM intensities separately is superior to using the PM-MM differences. To empirically compare expression indexes, we designed a mixing experiment involving three groups of human fibroblast cells (serum starved, serum stimulated, and a 50:50 mixture of starved/stimulated), with six replicate HuGeneFL arrays in each group. Careful spiking of control genes provides evidence that 88-98% of the genes on the array are detectably transcribed, and that the model-based estimates can accurately detect the presence versus absence of a gene. The use of extensive replication from single RNA sources enables exploration of the technical variability of the array.
Oncogene | 2004
Ruisheng Yao; Yian Wang; William J. Lemon; Ronald A. Lubet; Ming You
Budesonide, a glucocorticoid, was proven to be a highly effective agent in preventing the development of lung tumors in A/J mice. In a lung tumor bioassay, budesonide produced 70% inhibition of tumor multiplicity and 94% reduction of total tumor load compared to benzopyrene (B[a]P) treated mice. Gene expression array analysis was performed on mouse lung tumors from this bioassay using Affymetrix U74Av2 GeneChips to determine gene expression changes associated with budesonide treatment. We found 363 genes that were changed between lung tumors induced by treatment with B[a]P and similar tumors treated with budesonide. Among them, 243 genes were overexpressed and 120 genes were underexpressed after budesonide treatment. In addition, 108 genes differentially expressed during mouse lung tumorigenesis (50 genes overexpressed and 58 genes underexpressed) were modulated back to normal levels after budesonide treatment when compared with the controls group. These genes are involved in a broad range of different pathways including control of cell cycle, signal transduction, and apoptosis and may play a role in the observed preventive effect. Our results suggest that budesonide exerts its effects of chemoprevention through growth arrest via Mad2/3 and through apoptosis via Bim/Blk and, by inference, caspase-8/9. Using the pathway visualization tool GenMapp, G protein pathway and MAPK cascade were also regulated by budesonide. Thus, we have determined, for the first time, the expression profiles of genes modulated by budesonide during murine lung tumorigenesis. Our results indicate that the chemopreventive effects of budesonide in the mouse lung tumorigenesis assay involved increase and decrease expression of a wide variety of genes in multiple signaling pathways.
Journal of Medical Genetics | 2002
William J. Lemon; H Bernert; H Sun; Y Wang; Ming You
We applied microarray gene expression profiling to lungs from mouse strains having variable susceptibility to lung tumour development as a means to identify, within known quantitative trait loci (QTLs), candidate genes responsible for susceptibility or resistance to lung cancer. At least eight chromosomal regions of mice have been mapped and verified to be linked with lung tumour susceptibility or resistance. In this study, high density oligonucleotide arrays were used to measure the relative expression levels of >36 000 genes and ESTs in lung tissues of A/J, BALB/cJ, SM/J, C3H/HeJ, and C57BL/6J mice. A number of differentially expressed genes were found in each of the lung cancer susceptibility QTLs. Bioinformatic analysis of the differentially expressed genes located within QTLs produced 28 susceptibility candidates and 22 resistance candidates. These candidates may be extremely helpful in the ultimate identification of the precise genes responsible for lung tumour susceptibility or resistance in mice and, through follow up, humans. Complete data sets are available at http://thinker.med.ohio-state.edu.