William J. Simon
Durham University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by William J. Simon.
Electrophoresis | 2002
Stephen Chivasa; Bongani K. Ndimba; William J. Simon; Duncan Robertson; Xiao‐Lan Yu; J. Paul Knox; Paul Bolwell; Antoni R. Slabas
With the completion of the Arabidopsis genome, many hypothetical proteins have been predicted without any information on their expression, subcellular localisation and function. We have performed proteomic analysis of proteins sequentially extracted from enriched Arabidopsis cell wall fractions and separated by two‐dimensional gel electrophoresis (2‐DE). The proteins were identified by peptide mass fingerprinting using matrix‐assisted laser desorption/ionisation‐time of flight (MALDI‐TOF) mass spectrometry and genomic database searches. This is part of a targeted exercise to establish the entire Arabidopsis secretome database. We report evidence for new proteins of unknown function whose existence had been predicted from genomic sequences and, furthermore, localise them to the cell wall. In addition, we observed an unexpected presence in the cell wall preparations of proteins whose known biochemical activity has never been associated with this compartment hitherto. We discuss the implications of these findings and present results suggesting a possible involvement of cell wall kinases in plant responses to pathogen attack.
The Plant Cell | 2005
Stephen Chivasa; Bongani K. Ndimba; William J. Simon; Keith Lindsey; Antoni R. Slabas
ATP is a vital molecule used by living organisms as a universal source of energy required to drive the cogwheels of intracellular biochemical reactions necessary for growth and development. Animal cells release ATP to the extracellular milieu, where it functions as the primary signaling cue at the epicenter of a diverse range of physiological processes. Although recent findings revealed that intact plant tissues release ATP as well, there is no clearly defined physiological function of extracellular ATP in plants. Here, we show that extracellular ATP is essential for maintaining plant cell viability. Its removal by the cell-impermeant traps glucose–hexokinase and apyrase triggered death in both cell cultures and whole plants. Competitive exclusion of extracellular ATP from its binding sites by treatment with β,γ-methyleneadenosine 5′-triphosphate, a nonhydrolyzable analog of ATP, also resulted in death. The death response was observed in Arabidopsis thaliana, maize (Zea mays), bean (Phaseolus vulgaris), and tobacco (Nicotiana tabacum). Significantly, we discovered that fumonisin B1 (FB1) treatment of Arabidopsis triggered the depletion of extracellular ATP that preceded cell death and that exogenous ATP rescues Arabidopsis from FB1-induced death. These observations suggest that extracellular ATP suppresses a default death pathway in plants and that some forms of pathogen-induced cell death are mediated by the depletion of extracellular ATP.
Plant Physiology | 2005
Iwane Suzuki; Yu Kanesaki; Hidenori Hayashi; John J. Hall; William J. Simon; Antoni R. Slabas; Norio Murata
Histidine kinases (Hiks) in Synechocystis sp. PCC 6803 are involved in the transduction of signals associated with various kinds of environmental stress. To examine the potential role in thermotolerance of Hiks, we used genome microarray analysis to screen a Hik knockout library for mutations that affected the expression of genes for heat shock proteins. Mutation of the hik34 gene enhanced the levels of transcripts of a number of heat shock genes, including htpG and groESL1. Overexpression of the hik34 gene repressed the expression of these heat shock genes. In addition, the cells with a mutant gene for Hik34 (ΔHik34 cells) survived incubation at 48°C for 3 h, while wild-type cells and cells with mutations in other Hiks were killed. However, mutation of the hik34 gene had only an insignificant effect on the global expression of genes upon incubation of the mutant cells at 44°C for 20 min. Quantitative two-dimensional gel electrophoresis revealed that levels of GroES and HspA were elevated in ΔHik34 cells after incubation of cells at 42°C for 60 min. We overexpressed recombinant Hik34 protein in Escherichia coli and purified it. We found that the protein was autophosphorylated in vitro at physiological temperatures, but not at elevated temperatures, such as 44°C. These results suggest that Hik34 might negatively regulate the expression of certain heat shock genes that might be related to thermotolerance in Synechocystis.
Biochemical Society Transactions | 2004
Antoni R. Slabas; Bongani K. Ndimba; William J. Simon; Stephen Chivasa
We initiated a proteomic study as part of a programme aimed at discovering novel functions of the plant cell wall. Cell-wall fragments isolated from cell-suspension cultures of Arabidopsis thaliana were stripped of protein sequentially using CaCl2 and a urea-based buffer. The protein fractions were separated by two-dimensional gel electrophoresis and individual proteins were identified by MS. We identified a number of proteins considered to be resident in other organelles but not the cell wall on the basis of their classical biological function. These included citrate synthase, which is known to be targeted to mitochondria, peroxisomes and glyoxysomes, and luminal binding protein, which is an ER (endoplasmic reticulum)-resident protein. Searches of the Arabidopsis database revealed that there are several genes encoding putative citrate synthase and luminal binding protein. We have also performed detailed analyses of the protein sequences and this paper shows how each one contains encrypted targeting information that results in the export of the protein to the extracellular matrix. We discuss the presence of alternative non-classical secretory pathways in plants.
Proteomics | 2002
William J. Simon; John J. Hall; Iwane Suzuki; Norio Murata; Antoni R. Slabas
The unicellular cyanobacteria Synechocystis sp. (PCC6803) has become a model organism for a range of biochemical and molecular biology studies aimed at investigating environmental stress responses. In this study the soluble proteins of Synechocystis were analysed using narrow pH range (pH 4.5–5.5) zoom gels, automated matrix‐assisted laser desorption/ionization mass spectrometry acquisition, spectral processing and database searching. The work sets the foundation for investigations of proteomic changes following stress treatment. One hundred and ninety‐two protein spots were analysed and 105 proteins identified, of these 37 were novel proteins not previously seen on two‐dimensional gels. Proteins involved in amino acid biosynthesis, energy metabolism and protein modification were identified using this fully automated procedure demonstrating that automated acquisition and processing will be a useful tool for proteomic analyses on this organism.
Proteomics | 2010
Stephen Chivasa; William J. Simon; Alex M. Murphy; Keith Lindsey; John P. Carr; Antoni R. Slabas
Extracellular adenosine 5′‐triphosphate (eATP) is emerging as an important plant signalling compound capable of mobilising intracellular second messengers such as Ca2+, nitric oxide, and reactive oxygen species. However, the downstream molecular targets and the spectrum of physiological processes that eATP regulates are largely unknown. We used exogenous ATP and a non‐hydrolysable analogue as probes to identify the molecular and physiological effects of eATP‐mediated signalling in tobacco. 2‐DE coupled with MS/MS analysis revealed differential protein expression in response to perturbation of eATP signalling. These proteins are in several functional classes that included photosynthesis, mitochondrial ATP synthesis, and defence against oxidative stress, but the biggest response was in the pathogen defence‐related proteins. Consistent with this, impairment of eATP signalling induced resistance against the bacterial pathogen Erwinia carotovora subsp. carotovora. In addition, disease resistance activated by a fungal pathogen elicitor (xylanase from Trichoderma viride) was concomitant with eATP depletion. These results reveal several previously unknown putative molecular targets of eATP signalling, which pinpoint eATP as an important hub at which regulatory signals of some major primary metabolic pathways and defence responses are integrated.
PLOS ONE | 2010
John G. Rowland; Xin Pang; Iwane Suzuki; Norio Murata; William J. Simon; Antoni R. Slabas
Background Photosystem II (PSII) is the most thermally sensitive component of photosynthesis. Thermal acclimation of this complex activity is likely to be critically important to the ability of photosynthetic organisms to tolerate temperature changes in the environment. Methodology/Findings We have analysed gene expression using whole-genome microarrays and monitored alterations in physiology during acclimation of PSII to elevated growth temperature in Synechocystis sp. PCC 6803. PSII acclimation is complete within 480 minutes of exposure to elevated temperature and is associated with a highly dynamic transcriptional response. 176 genes were identified and classified into seven distinct response profile groups. Response profiles suggest the existence of an early transient phase and a sustained phase to the acclimation response. The early phase was characterised by induction of general stress response genes, including heat shock proteins, which are likely to influence PSII thermal stability. The sustained phase consisted of acclimation-specific alterations that are involved in other cellular processes. Sustained responses included genes involved in phycobillisome structure and modification, photosynthesis, respiration, lipid metabolism and motility. Approximately 60% of genes with sustained altered expression levels have no known function. The potential role of differentially expressed genes in thermotolerance and acclimation is discussed. We have characterised the acclimation physiology of selected gene ‘knockouts’ to elucidate possible gene function in the response. Conclusions/Significance All mutants show lower PSII rates under normal growth conditions. Basal PSII thermotolerance was affected by mutations in clpB1, cpcC2, hspA, htpG and slr1674. Final PSII thermotolerance was affected by mutations in cpcC2, hik34, hspA and hypA1, suggesting that these gene products play roles in long-term thermal acclimation of PSII.
Proteomics | 2010
John G. Rowland; William J. Simon; Yoshitaka Nishiyama; Antoni R. Slabas
Growth temperature has a marked influence on the thermotolerance of photosystem II (PSII), which is the most heat‐sensitive component of photosynthesis. Using Synechocystis sp. PCC 6803 we have established that thylakoids isolated from cells grown at 38°C have a greater degree of thermotolerance than those isolated from cells grown at 25°C. Reconstitution experiments using Triton X‐100 protein extracts of these thylakoids added to Triton‐treated thylakoid membranes further indicated that the 38°C Triton extract contains proteins that are directly capable of enhancing PSII thermotolerance. We have used 4‐plex iTRAQ, extensive off‐line fractionation and sample re‐injection to comprehensively identify the differences between these two preparations that may be responsible for the observed effects on PSII thermotolerance. This has resulted in the reproducible identification of 168 proteins out of a total of 385 distinct proteins. Our results have identified 15 proteins whose levels are increased in extracts that result in increased thermotolerance of PSII and 33 proteins whose levels decrease. Notably, components of the cytochrome b6/f and NADH dehydrogenase complexes, crucial components in electron transport, are approximately twofold more abundant in 38°C thylakoid extracts. The possible biological importance of these changes is discussed.
Journal of Proteome Research | 2011
John G. Rowland; William J. Simon; Jogadhenu S. S. Prakash; Antoni R. Slabas
One of the earliest and largest transcriptional responses that occur during exposure of Synechocystis sp. PCC6803 to cold is the induction of the crhR RNA helicase transcript. We show that crhR deletion results in failure to cold acclimate: there is reduced growth at 24 °C and marked impairment of growth at 20 °C. 2D-DIGE, using five biological replicates, was used to analyze the proteomic differences between the wild-type and ΔcrhR strains grown at (1) 34 °C and (2) following transfer from 34 to 24 °C (cold-acclimation). Sixteen significantly differentially expressed proteins were identified between the two strains grown at 34 °C. Forty-three distinct proteins were identified that responded to cold-acclimation of the wild-type and 34 proteins for the mutant, with only 26 proteins common to both. A large proportion of the proteomic responses (76.5%) could not be predicted from published transcriptomic data. Only modest similarity is observed between proteomic and transcriptomic responses (r = 0.54-0.70). We propose functions for three previously hypothetical proteins. We suggest molecular targets for CrhR action and identify downstream regulated events in metabolism.
Nucleus | 2011
clare R. Foster; Joanne L. Robson; William J. Simon; Jeremy Twigg; Derek cruikshank; Robert Wilson; Christopher J. Hutchison
Up-regulated expression of lamin A has been implicated in increased cell invasiveness and mortality in colorectal cancer. Here we use quantitative proteomics to investigate lamin A regulated changes in the cytoskeleton that might underpin increased cell motility. Using siRNA knockdown of lamin A in a model cell line (SW480/lamA) we confirm that the presence of lamin A promotes cell motility. Using an enhanced technique to prepare cytoskeleton fractions in combination with 2D DiGE we were able to accurately and reproducibly detect changes in the representation of protein species within the cytoskeleton as low as 20%. In total 64 protein spots displayed either increased or decreased representation within the cytoskeleton of SW480/lamA cells compared to controls. Of these the identities of 29 spots were determined by mass spectrometry. A majority were multiple forms of three classes of proteins, including components of the actin and IF cytoskeletons, protein chaperones and translation initiation and elongation factors. In particular our data reveal that the representation of tissue transglutaminase 2, which is known to modify elements of the cytoskeleton and is associated with cancer progression, was highly over-represented in the cytoskeleton fraction of SW480/lamA cells. Overall, our data are consistent with changed protein cross-linking and folding that favours the formation of dynamic actin filaments over stress fibres accounting for the altered cell motility properties in SW480/lamA cells.