Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where William K. Stell is active.

Publication


Featured researches published by William K. Stell.


Nature Neuroscience | 1999

Light- and focus-dependent expression of the transcription factor ZENK in the chick retina.

Andy J. Fischer; Jennifer J. McGuire; Frank Schaeffel; William K. Stell

Ocular growth and refraction are regulated by visual processing in the retina. We identified candidate regulatory neurons by immunocytochemistry for immediate-early gene products, ZENK (zif268, Egr-1) and Fos, after appropriate visual stimulation. ZENK synthesis was enhanced by conditions that suppress ocular elongation (plus defocus, termination of form deprivation) and suppressed by conditions that enhance ocular elongation (minus defocus, form deprivation), particularly in glucagon-containing amacrine cells. Fos synthesis was enhanced by termination of visual deprivation, but not by defocus and not in glucagon-containing amacrine cells. We conclude that glucagon-containing amacrine cells respond differentially to the sign of defocus and may mediate lens-induced changes in ocular growth and refraction.


Visual Neuroscience | 1993

Apomorphine blocks form-deprivation myopia in chickens by a dopamine D2-receptor mechanism acting in retina or pigmented epithelium.

Baerbel Rohrer; Arthur W. Spira; William K. Stell

Studies of form-deprivation myopia (FDM) in animal models have shown that postnatal ocular growth is regulated by the quality of patterned images on the retina. One of the major challenges in myopia research is to identify the biochemical mechanisms which translate retinal visual responses into signals that regulate scleral growth. Dopamine (DA) has been implicated in this process, since retinal DA levels decline in FDM and subconjunctival injections of apomorphine (Apo, a nonspecific DA agonist) prevent FDM in a dose-dependent way (Stone et al., 1989). To gain insight into where and how DA ligands act to regulate ocular elongation, we compared the action and distribution of DA receptor ligands injected intravitreally vs. subconjunctivally in young chicks. Ocular length was measured by A-scan ultrasound. We found that daily intravitreal injections of Apo block FDM at a 50% effective dose (ED50) of 5 pg per day, or a peak concentration in the vitreous humor of 108 pM, compared to an ED50 of 2.5 ng for subconjunctival injections as reported by Stone et al. (1989, 1990). [3H]-spiperone, a D2-receptor antagonist, reached average maximum retinal concentrations of 160 pM and 260 pM, during the first hour after intravitreal and subconjunctival administration, respectively, at the ED50 dose. In contrast, the maximum spiperone concentrations in the retinal pigment epithelium (RPE) were 30 pM and 410 pM, respectively, after intravitreal or subconjunctival ED50 doses. Spiperone concentrations in sclera after ED50 doses to the two sites differed by 4 x 10(4) (0.4 pM vs. 1.7 nM, respectively).(ABSTRACT TRUNCATED AT 250 WORDS)


The Journal of Comparative Neurology | 1998

Immunocytochemical characterization of quisqualic acid- and N-methyl-D-aspartate-induced excitotoxicity in the retina of chicks.

Andy J. Fischer; Ruth L. Pickett Seltner; Johnny Poon; William K. Stell

A single, large dose of N‐methyl‐D‐aspartate (NMDA) or quisqualic acid (QA) injected into the chick eye has been shown previously to destroy many retinal amacrine cells and to induce excessive ocular growth accompanied by myopia. The purpose of this study was to identify distinct populations of retinal cells, particularly those believed to be involved in regulating ocular growth, that are sensitive to NMDA or QA. Two μmol of NMDA or 0.2 μmol of QA were injected unilaterally into eyes of 7‐day‐old chicks, and retinas were prepared for observation 1, 3, or 7 days later. Retinal neurons were identified by using immunocytochemistry, and cells containing fragmented DNA were identified by 3′‐nick‐end labelling in frozen sections. NMDA and QA destroyed many amacrine cells, including those immunoreactive for vasoactive intestinal polypeptide, Met‐enkephalin, and choline acetyltransferase, but they had little effect upon tyrosine hydroxylase‐immunoreactive cells. Other cells affected by both QA and NMDA included those immunoreactive for glutamic acid decarboxylase, γ‐aminobutyric acid, parvalbumin, serotonin, and aminohydroxy methylisoxazole propionic acid (AMPA) receptor subunits GluR1 and GluR2/3. Cells largely unaffected by QA or NMDA included bipolar cells immunoreactive for protein kinase C (α and β isoforms) and amacrine cells immunoreactive for glucagon. DNA fragmentation was detected maximally in many amacrine cells and in some bipolar cells 1 day after exposure to QA or NMDA. We propose that excitotoxicity caused by QA and NMDA induces apoptosis in specific populations of amacrine cells and that these actions are responsible for the ocular growth‐specific effects of QA and NMDA reported elsewhere. J. Comp. Neurol. 393:1–15, 1998.


Annals of the New York Academy of Sciences | 1987

Functional‐Anatomical Studies on the Terminal Nerve Projection to the Retina of Bony Fishes

William K. Stell; Steven E. Walker; Alexander K. Ball

We have explored the structure and actions of terminal nerve (TN) fibers in the teleostean retina, the most accessible of TN projections. Using immunocytochemistry we have shown that the goldfish TN contains neuropeptides related to the molluscan cardioexcitatory peptide (FMRFamide) as well as luteinizing hormone-releasing hormone (LHRH). Retinal TN terminals were found upon major dendrites in the distal inner plexiform layer and neuronal cell bodies in the amacrine cell layer. Electron-microscopic double-labeling revealed TN terminals applied to the surface of [3H]-dopamine-, glycine-, and gamma-aminobutyric acid (GABA)-accumulating cells. Synthetic LHRH and FMRFamide at less than 1 microM modified spontaneous and light-evoked activity of ganglion cells in isolated superfused goldfish retina, especially during the active breeding season. Salmon(I)-LHRH was 10-30 times as potent as mammalian LHRH and caused rapid, prolonged desensitization. We conclude that LHRH- and FMRFamide-like peptides may be released by retinal TN endings, probably in concert with reproductive activity, and that they act independently through horizontal and/or amacrine cell pathways to modify visual information processing in the retina.


The Journal of Comparative Neurology | 1999

Nitric oxide synthase-containing cells in the retina, pigmented epithelium, choroid, and sclera of the chick eye.

Andy J. Fischer; William K. Stell

Nitric oxide is a nonconventional neurotransmitter that is produced as needed by the enzyme nitric oxide synthase (NOS). NOS has been detected in numerous neural structures, including distinct populations of retinal neurons in a variety of vertebrate species. The purpose of this study was to identify NOS‐containing cells in the retina and extraretinal ocular tissues of hatched chicks. NOS was detected in frozen sections by using nicotinamide adenine dinucleotide phosphate (NADPH)‐diaphorase histochemistry and antisera to neuronal NOS. In the retina, NADPH‐diaphorase and NOS immunolabelling were present in four subtypes of amacrine cells, some ganglion cells, efferent fibers, efferent target cells, and neuronal processes in both plexiform layers, whereas diaphorase alone was detected in photoreceptor ellipsoids and Müller cells. In addition, NADPH‐diaphorase and immunoreactive NOS were detected in axon bundles and innervation to vascular smooth muscle in the choroid, whereas stromal and endothelial cells in the choroid, scleral chondrocytes, and the retinal pigmented epithelium contained only NADPH‐diaphorase. The excitotoxin quisqualate destroyed all but one subtype of NOS‐immunoreactive amacrine cell and caused increased NADPH‐diaphorase activity in Müller cells. We conclude that nitric oxide is produced by many different cells in the chick eye, including retinal amacrine and ganglion cells, Müller cells, retinal pigmented epithelium, and cells in the choroid, and likely has a broad range of visual and regulatory functions. J. Comp. Neurol. 405:1–14, 1999.


Brain Research | 1986

Gonadotropin-Releasing Hormone (GnRF), Molluscan Cardioexcitatory Peptide (FMRFamide), Enkephalin and Related Neuropeptides Affect Goldfish Retinal Ganglion Cell Activity

Steven E. Walker; William K. Stell

Recently gonadotropin-releasing hormone (GnRF)-like and molluscan cardioexcitatory peptide (FMRFamide)-like compounds have been colocalized immunocytochemically to the terminal nerve, a presumed olfactoretinal efferent system in goldfish. In the present study these and related neuropeptides were shown to affect ganglion cell activity, recorded extracellularly, when applied to the isolated superfused goldfish retina. GnRF was usually excitatory. Salmon GnRF (sGnRF) was 10-30x more potent than chicken or mammalian GnRF. FMRFamide and enkephalin also were often excitatory but caused more varied responses than sGnRF. Met5-enkephalin-Arg6-Phe7-NH2 (YGGFMRFamide), which contains both enkephalin and FMRFamide sequences, tended to act like both of these peptides but with mainly enkephalin-like properties. Neuropeptide Y and the C-terminal hexapeptide of pancreatic polypeptides, whose C-terminus (-Arg-Tyr-NH2) is closely related to that of FMRFamide (-Arg-Phe-NH2), gave no consistent responses. Threshold doses were equivalent to: 0.1 microM for sGnRF; 0.5 microM for YGGFMRFamide; 1.5 microM for FMRFamide and enkephalin. Rapid, complete and irreversible desensitization was induced by single, 10-20x threshold doses of sGnRF; but desensitization was infrequent and limited with the other peptides. In general, all peptides tested affected the spatially and chromatically antagonistic receptive field components similarly, but selective actions were seen in a few cases with FMRFamide and with the opioid antagonist, naloxone. Responses, especially to sGnRF and FMRFamide, tended to be most frequently obtained and pronounced in winter and spring, suggesting a correlation with seasonally regulated sexual and reproductive activity. Our observations provide further evidence for transmitter-like roles of neuropeptides related to sGnRF and FMRFamide in the teleostean terminal nerve. The actions of agonists and antagonists, singly and in combination, imply strongly that there are distinctive postsynaptic receptors and/or neural pathways for GnRF-, FMRFamide- and enkephalin-like peptides in the goldfish retina.


Neuroscience Letters | 1984

Immunocytochemical localization of putative cholinergic neurons in the goldfish retina

N. Tumosa; F. Eckenstein; William K. Stell

The presence of putative cholinergic neurons in goldfish retina was demonstrated by immunocytochemical localization of choline acetyltransferase (ChAT), the synthesizing enzyme for acetylcholine. Four populations of ChAT-immunoreactive neurons were localized: two with cell bodies in the inner nuclear layer and two with cell bodies in the ganglion cell layer. The processes of these neurons ramified in lamina 2 and/or 4 (of 5) in the inner plexiform layer. These cell populations are comparable to populations of putative cholinergic neurons that have been identified by [3H]choline uptake [3, 10].


Scientific Reports | 2016

Nitric Oxide (NO) Mediates the Inhibition of Form-Deprivation Myopia by Atropine in Chicks.

Brittany J. Carr; William K. Stell

Myopia is the most common childhood refractive disorder. Atropine inhibits myopia progression, but its mechanism is unknown. Here, we show that myopia-prevention by atropine requires production of nitric oxide (NO). Form-deprivation myopia (FDM) was induced in week-old chicks by diffusers over the right eye (OD); the left eye (OS) remained ungoggled. On post-goggling days 1, 3, and 5, OD received intravitreally 20 µL of phosphate-buffered saline (vehicle), or vehicle plus: NO source: L-arginine (L-Arg, 60–6,000 nmol) or sodium nitroprusside (SNP, 10–1,000 nmol); atropine (240 nmol); NO inhibitors: L-NIO or L-NMMA (6 nmol); negative controls: D-Arg (10 µmol) or D-NMMA (6 nmol); or atropine plus L-NIO, L-NMMA, or D-NMMA; OS received vehicle. On day 6 post-goggling, refractive error, axial length, equatorial diameter, and wet weight were measured. Vehicle-injected goggled eyes developed significant FDM. This was inhibited by L-Arg (ED50 = 400 nmol) or SNP (ED50 = 20 nmol), but not D-Arg. Higher-dose SNP, but not L-Arg, was toxic to retina/RPE. Atropine inhibited FDM as expected; adding NOS-inhibitors (L-NIO, L-NMMA) to atropine inhibited this effect dose-dependently, but adding D-NMMA did not. Equatorial diameter, wet weight, and metrics of control eyes were not affected by any treatment. In summary, intraocular NO inhibits myopia dose-dependently and is obligatory for inhibition of myopia by atropine.


The Journal of Comparative Neurology | 1998

IDENTIFICATION AND LOCALIZATION OF MUSCARINIC ACETYLCHOLINE RECEPTORS IN THE OCULAR TISSUES OF THE CHICK

Andy J. Fischer; Lise A. McKinnon; Neil M. Nathanson; William K. Stell

The purpose of this study was to characterize the distribution of muscarinic acetylcholine receptors (mAChRs) in the ocular tissues of hatched chicks. In the chick, different isoforms of these receptors have been detected in the brain, heart, and retina, and mAChRs in ocular tissues have been implicated in the pathogenesis of form‐deprivation myopia. However, the precise anatomical distribution of mAChRs within the retina, retinal pigment epithelium, choroid, ciliary body, and ciliary ganglion remains unknown. We used affinity‐purified, type‐specific antibodies directed to three different chick mAChR subtypes (cm2, cm3, and cm4) to detect receptor immunoreactivity in sections and extracts of these ocular tissues. We found cm2, cm3, and cm4 in the retina, retinal pigment epithelium, choroid, and ciliary body. Within the retina, cm2 was expressed in numerous amacrine and ganglion cells; cm3 was expressed in many bipolar cells and small subsets of amacrine cells; and cm4 was found in most, if not all, amacrine and ganglion cells. Each mAChR was localized to distinct strata within the inner plexiform layer that cumulatively form three broad bands that closely match previously described localizations of subtype‐nonspecific muscarinic ligand binding. Only cm3 was detected in the outer plexiform layer, and only cm4 was detected in the ciliary ganglion. We propose that each mAChR subtype has unique functions in each ocular tissue. J. Comp. Neurol. 392:273–284, 1998.


Vision Research | 1999

Colchicine causes excessive ocular growth and myopia in chicks

Andy J. Fischer; Ian G. Morgan; William K. Stell

Colchicine has been reported to destroy ganglion cells (GCs) in the retina of hatchling chicks. We tested whether colchicine influences normal ocular growth and form-deprivation myopia, and whether it affects cells other than GCs. Colchicine greatly increased axial length, equatorial diameter, eye weight, and myopic refractive error, while reducing corneal curvature. Colchicine caused DNA fragmentation in many GCs and some amacrine cells and photoreceptors, ultimately leading to the destruction of most GCs and particular sub-sets of amacrine cells. Colchicine-induced ocular growth may result from the destruction of amacrine cells that normally suppress ocular growth, and corneal flattening may result from the destruction of GCs whose central pathway normally plays a role in shaping the cornea.

Collaboration


Dive into the William K. Stell's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge