Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where William L. Chapman is active.

Publication


Featured researches published by William L. Chapman.


Bulletin of the American Meteorological Society | 1993

Recent Variations of Sea Ice and Air Temperature in High Latitudes

William L. Chapman; John Walsh

Feedbacks resulting from the retreat of sea ice and snow contribute to the polar amplification of the greenhouse warming projected by global climate models. A gridded sea-ice database, for which the record length is now approaching four decades for the Arctic and two decades for the Antarctic, is summarized here. The sea-ice fluctuations derived from the dataset are characterized by 1) temporal scales of several seasons to several years and 2) spatial scales of 30°–180° of longitude. The ice data are examined in conjunction with air temperature data for evidence of recent climate change in the polar regions. The arctic sea-ice variations over the past several decades are compatible with the corresponding air temperatures, which show a distinct warming that is strongest over northern land areas during the winter and spring. The temperature trends over the subarctic seas are smaller and even negative in the southern Greenland region. Statistically significant decreases of the summer extent of arctic ice are...


Journal of Climate | 1996

Recent Decrease of Sea Level Pressure in the Central Arctic

John Walsh; William L. Chapman; Timothy L. Shy

Abstract Arctic sea level pressure data from the period of the Arctic Ocean Buoy Program show a significant decrease in the annual mean. In every calendar month, the annual mean is lower in the second half of the 1979–1994 period than in the first. The changes of the annual means are larger in the central Arctic than anywhere else in the Northern Hemisphere. The decreases are largest and statistically significant in the autumn and winter. The annual anomalies became negative relative to the 16-yr mean in the 1980s and have been negative in every year since 1988. Correspondingly, the mean anticyclone in the Arctic pressure field has weakened and the vorticity of the gradient wind field over the central Arctic Ocean has become more positive than at any time in the past several decades. The pressure decrease, which has been compensated by pressure increases over the subpolar oceans, implies that the wind forcing of sea ice contains an enhanced cyclonic component relative to earlier decades.


Journal of Climate | 2007

Simulations of Arctic Temperature and Pressure by Global Coupled Models

William L. Chapman; John Walsh

Abstract Simulations of Arctic surface air temperature and sea level pressure by 14 global climate models used in the Fourth Assessment Report of the Intergovernmental Panel on Climate Change are synthesized in an analysis of biases and trends. Simulated composite GCM surface air temperatures for 1981–2000 are generally 1°–2°C colder than corresponding observations with the exception of a cold bias maximum of 6°–8°C in the Barents Sea. The Barents Sea bias, most prominent in winter and spring, occurs in 12 of the 14 GCMs and corresponds to a region of oversimulated sea ice. All models project a twenty-first-century warming that is largest in the autumn and winter, although the rates of the projected warming vary considerably among the models. The across-model and across-scenario uncertainties in the projected temperatures are comparable through the first half of the twenty-first century, but increases in variability associated with the choice of scenario begin to outpace increases in across-model variabil...


Journal of Climate | 2007

A Synthesis of Antarctic Temperatures

William L. Chapman; John Walsh

Abstract Monthly surface air temperatures from land surface stations, automatic weather stations, and ship/buoy observations from the high-latitude Southern Hemisphere are synthesized into gridded analyses at a resolution appropriate for applications ranging from spatial trend analyses to climate change impact assessments. Correlation length scales are used to enhance information content while limiting the spatial extent of influence of the sparse data in the Antarctic region. The correlation length scales are generally largest in summer and over the Antarctic continent, while they are shortest over the winter sea ice. Gridded analyses of temperature anomalies, limited to regions within a correlation length scale of at least one observation, are constructed and validated against observed temperature anomalies in single-station-out experiments. Trends calculated for the 1958–2002 period suggest modest warming over much of the 60°–90°S domain. All seasons show warming, with winter trends being the largest a...


Journal of Climate | 2008

Global Climate Model Performance over Alaska and Greenland

John Walsh; William L. Chapman; Vladimir E. Romanovsky; Jesper Christensen; Martin Stendel

The performance of a set of 15 global climate models used in the Coupled Model Intercomparison Project is evaluated for Alaska and Greenland, and compared with the performance over broader pan-Arctic and Northern Hemisphere extratropical domains. Root-mean-square errors relative to the 1958–2000 climatology of the 40-yr ECMWF Re-Analysis (ERA-40) are summed over the seasonal cycles of three variables: surface air temperature, precipitation, and sea level pressure. The specific models that perform best over the larger domains tend to be the ones that perform best over Alaska and Greenland. The rankings of the models are largely unchanged when the bias of each model’s climatological annual mean is removed prior to the error calculation for the individual models. The annual mean biases typically account for about half of the models’ root-mean-square errors. However, the root-mean-square errors of the models are generally much larger than the biases of the composite output, indicating that the systematic errors differ considerably among the models. There is a tendency for the models with smaller errors to simulate a larger greenhouse warming over the Arctic, as well as larger increases of Arctic precipitation and decreases of Arctic sea level pressure, when greenhouse gas concentrations are increased. Because several models have substantially smaller systematic errors than the other models, the differences in greenhouse projections imply that the choice of a subset of models may offer a viable approach to narrowing the uncertainty and obtaining more robust estimates of future climate change in regions such as Alaska, Greenland, and the broader Arctic.


Journal of Climate | 1995

Development of a Regional Climate Model of the Western Arctic

Amanda H. Lynch; William L. Chapman; John Walsh; Gunter Weller

Abstract An Arctic region climate system model has been developed to simulate coupled interactions among the atmosphere, sea ice, ocean, and land surface of the western Arctic. The atmospheric formulation is based upon the NCAR regional climate model RegCM2, and includes the NCAR Community Climate Model Version 2 radiation scheme and the Biosphere–Atmosphere Transfer Scheme. The dynamic–thermodynamic sea ice model includes the Hibler–Flato cavitating fluid formulation and the Parkinson–Washington thermodynamic scheme linked to a mixed-layer ocean. Arctic winter and summer simulations have been performed at a 63 km resolution, driven at the boundaries by analyses compiled at the European Centre for Medium-Range Weather Forecasts. While the general spatial patterns are consistent with observations, the model shows biases when the results are examined in detail. These biases appear to be consequences in part of the lack of parameterizations of ice dynamics and the ice phase in atmospheric moist processes in ...


Journal of Climate | 1998

Arctic Cloud–Radiation–Temperature Associations in Observational Data and Atmospheric Reanalyses

John Walsh; William L. Chapman

Abstract Associations between cloudiness, radiative fluxes, and surface air temperature in the central Arctic are evaluated from 1) measurements made at Russian drifting ice stations, and 2) atmospheric reanalyses of the National Centers for Environmental Prediction (NCEP) and the European Centre for Medium-Range Weather Forecasts (ECMWF). In the ice station data, cloudiness is associated with an increase of downward longwave radiation in all months and an increase of net (downward minus upward) total radiation from September through March. The surface air temperatures under overcast skies are 6°–9°C higher than under clear skies during September–March, and the differences are even larger when the observations are stratified by wind as well as cloudiness. The warming by the radiative flux enhancement after a transition from clear skies to overcast has a 1–2-day timescale, while the cooling after the transition to clear skies has a somewhat shorter timescale. The NCEP reanalysis exaggerates slightly the as...


Journal of Hydrometeorology | 2007

Simulation and Projection of Arctic Freshwater Budget Components by the IPCC AR4 Global Climate Models

Vladimir M. Kattsov; John Walsh; William L. Chapman; Veronika Govorkova; Tatyana Pavlova; Xiangdong Zhang

Abstract The state-of-the-art AOGCM simulations have recently (late 2004–early 2005) been completed for the Intergovernmental Panel on Climate Change (IPCC) in order to provide input to the IPCC’s Fourth Assessment Report (AR4). The present paper synthesizes the new simulations of both the twentieth- and twenty-first-century arctic freshwater budget components for use in the IPCC AR4, and attempts to determine whether demonstrable progress has been achieved since the late 1990s. Precipitation and its difference with evapotranspiration are addressed over the Arctic Ocean and its terrestrial watersheds, including the basins of the four major rivers draining into the Arctic Ocean: the Ob, the Yenisey, the Lena, and the Mackenzie. Compared to the previous [IPCC Third Assessment Report (TAR)] generation of AOGCMs, there are some indications that the models as a class have improved in simulations of the Arctic precipitation. In spite of observational uncertainties, the models still appear to oversimulate area-a...


Annals of Glaciology | 2001

20th-century sea-ice variations from observational data

John Walsh; William L. Chapman

Abstract In order to extend diagnoses of recent sea-ice variations beyond the past few decades, a century-scale digital dataset of Arctic sea-ice coverage has been compiled. For recent decades, the compilation utilizes satellite-derived hemispheric datasets. Regional datasets based primarily on ship reports and aerial reconnaissance are the primary inputs for the earlier part of the 20th century. While the various datasets contain some discrepancies, they capture the same general variations during their period of overlap. The outstanding feature of the time series of total hemispheric ice extent is a decrease that has accelerated during the past several decades. The decrease is greatest in summer and weakest in winter, contrary to the seasonality of the greenhouse changes projected by most global climate models. The primary spatial modes of sea-ice variability diagnosed in terms of empirical orthogonal functions, also show a strong seasonality. The first winter mode is dominated by an opposition of anomalies in the western and eastern North Atlantic, corresponding to the well-documented North Atlantic Oscillation. The primary summer mode depicts an anomaly of the same sign over nearly the entire Arctic and captures the recent trend of sea-ice coverage.


Journal of Climate | 2009

Arctic cloud fraction and radiative fluxes in atmospheric reanalyses.

John Walsh; William L. Chapman; Diane H. Portis

Abstract Arctic radiative fluxes, cloud fraction, and cloud radiative forcing are evaluated from four currently available reanalysis models using data from the North Slope of Alaska (NSA) Barrow site of the Atmospheric Radiation Measurement Program (ARM). A primary objective of the ARM–NSA program is to provide a high-resolution dataset of direct measurements of Arctic clouds and radiation so that global climate models can better parameterize high-latitude cloud radiative processes. The four reanalysis models used in this study are the 1) NCEP–NCAR global reanalysis, 2) 40-yr ECMWF Re-Analysis (ERA-40), 3) NCEP–NCAR North American Regional Reanalysis (NARR), and 4) Japan Meteorological Agency and Central Research Institute of Electric Power Industry 25-yr Reanalysis (JRA25). The reanalysis models simulate the radiative fluxes well if/when the cloud fraction is simulated correctly. However, the systematic errors of climatological reanalysis cloud fractions are substantial. Cloud fraction and radiation bias...

Collaboration


Dive into the William L. Chapman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John E. Walsh

University of Alaska Fairbanks

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul A. Duffy

University of Alaska Fairbanks

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Steve Vavrus

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Vladimir E. Romanovsky

University of Alaska Fairbanks

View shared research outputs
Researchain Logo
Decentralizing Knowledge