William Leister
National Institutes of Health
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by William Leister.
Nature Chemical Biology | 2012
Dimitrios Anastasiou; Yimin Yu; William J. Israelsen; Jian Kang Jiang; Matthew B. Boxer; Bum Soo Hong; Wolfram Tempel; Svetoslav Dimov; Min Shen; Abhishek K. Jha; Hua Yang; Katherine R. Mattaini; Christian M. Metallo; Brian Prescott Fiske; Kevin D. Courtney; Scott Malstrom; Tahsin M. Khan; Charles Kung; Amanda P. Skoumbourdis; Henrike Veith; Noel Southall; Martin J. Walsh; Kyle R. Brimacombe; William Leister; Sophia Y. Lunt; Zachary R. Johnson; Katharine E. Yen; Kaiko Kunii; Shawn M. Davidson; Heather R. Christofk
Cancer cells engage in a metabolic program to enhance biosynthesis and support cell proliferation. The regulatory properties of pyruvate kinase M2 (PKM2) influence altered glucose metabolism in cancer. PKM2 interaction with phosphotyrosine-containing proteins inhibits enzyme activity and increases availability of glycolytic metabolites to support cell proliferation. This suggests that high pyruvate kinase activity may suppress tumor growth. We show that expression of PKM1, the pyruvate kinase isoform with high constitutive activity, or exposure to published small molecule PKM2 activators inhibit growth of xenograft tumors. Structural studies reveal that small molecule activators bind PKM2 at the subunit interaction interface, a site distinct from that of the endogenous activator fructose-1,6-bisphosphate (FBP). However, unlike FBP, binding of activators to PKM2 promotes a constitutively active enzyme state that is resistant to inhibition by tyrosine-phosphorylated proteins. These data support the notion that small molecule activation of PKM2 can interfere with anabolic metabolism.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Lesley A. Mathews Griner; Rajarshi Guha; Paul Shinn; Ryan M. Young; Jonathan M. Keller; Dongbo Liu; Ian S. Goldlust; Adam Yasgar; Crystal McKnight; Matthew B. Boxer; Damien Y. Duveau; Jian-kang Jiang; Sam Michael; Tim Mierzwa; Wenwei Huang; Martin J. Walsh; Bryan T. Mott; Paresma R. Patel; William Leister; David J. Maloney; Christopher A. LeClair; Ganesha Rai; Ajit Jadhav; Brian D. Peyser; Christopher P. Austin; Scott E. Martin; Anton Simeonov; Marc Ferrer; Louis M. Staudt; Craig J. Thomas
Significance The treatment of cancer is highly reliant on drug combinations. Next-generation, targeted therapeutics are demonstrating interesting single-agent activities in clinical trials; however, the discovery of companion drugs through iterative clinical trial-and-error is not a tenable mechanism to prioritize clinically important combinations for these agents. Herein we describe the results of a large, high-throughput combination screen of the Bruton’s tyrosine kinase inhibitor ibrutinib versus a library of nearly 500 approved and investigational drugs. Multiple ibrutinib combinations were discovered through this study that can be prioritized for clinical examination. The clinical development of drug combinations is typically achieved through trial-and-error or via insight gained through a detailed molecular understanding of dysregulated signaling pathways in a specific cancer type. Unbiased small-molecule combination (matrix) screening represents a high-throughput means to explore hundreds and even thousands of drug–drug pairs for potential investigation and translation. Here, we describe a high-throughput screening platform capable of testing compounds in pairwise matrix blocks for the rapid and systematic identification of synergistic, additive, and antagonistic drug combinations. We use this platform to define potential therapeutic combinations for the activated B-cell–like subtype (ABC) of diffuse large B-cell lymphoma (DLBCL). We identify drugs with synergy, additivity, and antagonism with the Bruton’s tyrosine kinase inhibitor ibrutinib, which targets the chronic active B-cell receptor signaling that characterizes ABC DLBCL. Ibrutinib interacted favorably with a wide range of compounds, including inhibitors of the PI3K-AKT-mammalian target of rapamycin signaling cascade, other B-cell receptor pathway inhibitors, Bcl-2 family inhibitors, and several components of chemotherapy that is the standard of care for DLBCL.
Biochemical Pharmacology | 2010
Susanne C. Miller; Ruili Huang; Srilatha Sakamuru; Sunita J. Shukla; Matias S. Attene-Ramos; Paul Shinn; Danielle van Leer; William Leister; Christopher P. Austin; Menghang Xia
Nuclear factor-kappa B (NF-kappaB) is a transcription factor that plays a critical role across many cellular processes including embryonic and neuronal development, cell proliferation, apoptosis, and immune responses to infection and inflammation. Dysregulation of NF-kappaB signaling is associated with inflammatory diseases and certain cancers. Constitutive activation of NF-kappaB signaling has been found in some types of tumors including breast, colon, prostate, skin and lymphoid, hence therapeutic blockade of NF-kappaB signaling in cancer cells provides an attractive strategy for the development of anticancer drugs. To identify small molecule inhibitors of NF-kappaB signaling, we screened approximately 2800 clinically approved drugs and bioactive compounds from the NIH Chemical Genomics Center Pharmaceutical Collection (NPC) in a NF-kappaB mediated beta-lactamase reporter gene assay. Each compound was tested at fifteen different concentrations in a quantitative high throughput screening format. We identified nineteen drugs that inhibited NF-kappaB signaling, with potencies as low as 20 nM. Many of these drugs, including emetine, fluorosalan, sunitinib malate, bithionol, narasin, tribromsalan, and lestaurtinib, inhibited NF-kappaB signaling via inhibition of IkappaBalpha phosphorylation. Others, such as ectinascidin 743, chromomycin A3 and bortezomib utilized other mechanisms. Furthermore, many of these drugs induced caspase 3/7 activity and had an inhibitory effect on cervical cancer cell growth. Our results indicate that many currently approved pharmaceuticals have previously unappreciated effects on NF-kappaB signaling, which may contribute to anticancer therapeutic effects. Comprehensive profiling of approved drugs provides insight into their molecular mechanisms, thus providing a basis for drug repurposing.
Journal of Medicinal Chemistry | 2008
Jian-kang Jiang; Kamran Ghoreschi; Francesca Deflorian; Zhi Chen; Melissa Perreira; Marko Pesu; Jeremy C. Smith; Dac-Trung Nguyen; Eric Liu; William Leister; Stefano Costanzi; John J. O'Shea; Craig J. Thomas
Here, we examine the significance that stereochemistry plays within the clinically relevant Janus kinase 3 (Jak3) inhibitor 1 (CP-690,550). A synthesis of all four enantiopure stereoisomers of the drug was carried out and an examination of each compound revealed that only the enantiopure 3R,4R isomer was capable of blocking Stat5 phosphorylation (Jak3 dependent). Each compound was profiled across a panel of over 350 kinases, which revealed a high level of selectivity for the Jak family kinases for these related compounds. Each stereoisomer retained a degree of binding to Jak3 and Jak2 and the 3R,4S and 3S,4R stereoisomers were further revealed to have binding affinity for selected members of the STE7 and STE20 subfamily of kinases. Finally, an appraisal of the minimum energy conformation of each stereoisomer and molecular docking at Jak3 was performed in an effort to better understand each compounds selectivity and potency profiles.
Bioorganic & Medicinal Chemistry Letters | 2010
Jian-kang Jiang; Matthew B. Boxer; Matthew G. Vander Heiden; Min Shen; Amanda P. Skoumbourdis; Noel Southall; Henrike Veith; William Leister; Christopher P. Austin; Hee-Won Park; James Inglese; Lewis C. Cantley; Douglas S. Auld; Craig J. Thomas
Cancer cells have distinct metabolic needs that are different from normal cells and can be exploited for development of anti-cancer therapeutics. Activation of the tumor specific M2 form of pyruvate kinase (PKM2) is a potential strategy for returning cancer cells to a metabolic state characteristic of normal cells. Here, we describe activators of PKM2 based upon a substituted thieno[3,2-b]pyrrole[3,2-d]pyridazinone scaffold. The synthesis of these agents, structure-activity relationships, analysis of activity at related targets (PKM1, PKR and PKL) and examination of aqueous solubility are investigated. These agents represent the second reported chemotype for activation of PKM2.
Journal of Medicinal Chemistry | 2012
Samarjit Patnaik; Wei Zheng; Jae H. Choi; Omid Motabar; Noel Southall; Wendy Westbroek; Wendy A. Lea; Arash Velayati; Ehud Goldin; Ellen Sidransky; William Leister; Juan J. Marugan
A major challenge in the field of Gaucher disease has been the development of new therapeutic strategies including molecular chaperones. All previously described chaperones of glucocerebrosidase are enzyme inhibitors, which complicates their clinical development because their chaperone activity must be balanced against the functional inhibition of the enzyme. Using a novel high throughput screening methodology, we identified a chemical series that does not inhibit the enzyme but can still facilitate its translocation to the lysosome as measured by immunostaining of glucocerebrosidase in patient fibroblasts. These compounds provide the basis for the development of a novel approach toward small molecule treatment for patients with Gaucher disease.
Tetrahedron Letters | 2003
Zhijian Zhao; William Leister; Kimberly A. Strauss; David D. Wisnoski; Craig W. Lindsley
By the application of microwave technology, a general protocol has been developed for the rapid synthesis of diverse 3,5,6-trisubstituted 1,2,4-triazines in excellent yield and purity, including many previously unknown 3-heterocyclic-1,2,4-triazines.
Journal of Medicinal Chemistry | 2009
Ganesha Rai; Ahmed A. Sayed; Wendy A. Lea; Hans F. Luecke; Harinath Chakrapani; Stefanie Prast-Nielsen; Ajit Jadhav; William Leister; Min Shen; James Inglese; Christopher P. Austin; Larry K. Keefer; Elias S.J. Arnér; Anton Simeonov; David J. Maloney; David L. Williams; Craig J. Thomas
Schistosomiasis is a chronic parasitic disease affecting hundreds of millions of individuals worldwide. Current treatment depends on a single agent, praziquantel, raising concerns of emergence of resistant parasites. Here, we continue our explorations of an oxadiazole-2-oxide class of compounds we recently identified as inhibitors of thioredoxin glutathione reductase (TGR), a selenocysteine-containing flavoenzyme required by the parasite to maintain proper cellular redox balance. Through systematic evaluation of the core molecular structure of this chemotype, we define the essential pharmacophore, establish a link between the nitric oxide donation and TGR inhibition, determine the selectivity for this chemotype versus related reductase enzymes, and present evidence that these agents can be modified to possess appropriate drug metabolism and pharmacokinetic properties. The mechanistic link between exogenous NO donation and parasite injury is expanded and better defined. The results of these studies verify the utility of oxadiazole-2-oxides as novel inhibitors of TGR and as efficacious antischistosomal agents.
Journal of Medicinal Chemistry | 2011
Juan J. Marugan; Wei Zheng; Omid Motabar; Noel Southall; Ehud Goldin; Wendy Westbroek; Barbara K. Stubblefield; Ellen Sidransky; Ronald A. Aungst; Wendy A. Lea; Anton Simeonov; William Leister; Christopher P. Austin
Gaucher disease is a lysosomal storage disorder (LSD) caused by deficiency in the enzyme glucocerebrosidase (GC). Small molecule chaperones of protein folding and translocation have been proposed as a promising therapeutic approach to this LSD. Most small molecule chaperones described in the literature contain an iminosugar scaffold. Here we present the discovery and evaluation of a new series of GC inhibitors with a quinazoline core. We demonstrate that this series can improve the translocation of GC to the lysosome in patient-derived cells. To optimize this chemical series, systematic synthetic modifications were performed and the SAR was evaluated and compared using three different readouts of compound activity: enzymatic inhibition, enzyme thermostabilization, and lysosomal translocation of GC.
Bioorganic & Medicinal Chemistry Letters | 2011
Martin J. Walsh; Kyle R. Brimacombe; Henrike Veith; James M. Bougie; Thomas Oran Daniel; William Leister; Lewis C. Cantley; William J. Israelsen; Matthew G. Vander Heiden; Min Shen; Douglas S. Auld; Craig J. Thomas; Matthew B. Boxer
Compared to normal differentiated cells, cancer cells have altered metabolic regulation to support biosynthesis and the expression of the M2 isozyme of pyruvate kinase (PKM2) plays an important role in this anabolic metabolism. While the M1 isoform is a highly active enzyme, the alternatively spliced M2 variant is considerably less active and expressed in tumors. While the exact mechanism by which decreased pyruvate kinase activity contributes to anabolic metabolism remains unclear, it is hypothesized that activation of PKM2 to levels seen with PKM1 may promote a metabolic program that is not conducive to cell proliferation. Here we report the third chemotype in a series of PKM2 activators based on the 2-oxo-N-aryl-1,2,3,4-tetrahydroquinoline-6-sulfonamide scaffold. The synthesis, structure activity relationships, selectivity and notable physiochemical properties are described.