William M. Benzel
United States Geological Survey
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by William M. Benzel.
Environmental Health Perspectives | 2013
Geoffrey S. Plumlee; James Durant; Suzette A. Morman; Antonio Neri; Ruth E. Wolf; Carrie A. Dooyema; Philip L. Hageman; Heather A. Lowers; Gregory L. Fernette; Gregory P. Meeker; William M. Benzel; Rhonda L. Driscoll; Cyrus J. Berry; James G. Crock; Harland L. Goldstein; Monique Adams; Casey Bartrem; Simba Tirima; Behrooz Behbod; Ian von Lindern; Mary Jean Brown
Background: In 2010, Médecins Sans Frontières discovered a lead poisoning outbreak linked to artisanal gold processing in northwestern Nigeria. The outbreak has killed approximately 400 young children and affected thousands more. Objectives: Our aim was to undertake an interdisciplinary geological- and health-science assessment to clarify lead sources and exposure pathways, identify additional toxicants of concern and populations at risk, and examine potential for similar lead poisoning globally. Methods: We applied diverse analytical methods to ore samples, soil and sweep samples from villages and family compounds, and plant foodstuff samples. Results: Natural weathering of lead-rich gold ores before mining formed abundant, highly gastric-bioaccessible lead carbonates. The same fingerprint of lead minerals found in all sample types confirms that ore processing caused extreme contamination, with up to 185,000 ppm lead in soils/sweep samples and up to 145 ppm lead in plant foodstuffs. Incidental ingestion of soils via hand-to-mouth transmission and of dusts cleared from the respiratory tract is the dominant exposure pathway. Consumption of water and foodstuffs contaminated by the processing is likely lesser, but these are still significant exposure pathways. Although young children suffered the most immediate and severe consequences, results indicate that older children, adult workers, pregnant women, and breastfed infants are also at risk for lead poisoning. Mercury, arsenic, manganese, antimony, and crystalline silica exposures pose additional health threats. Conclusions: Results inform ongoing efforts in Nigeria to assess lead contamination and poisoning, treat victims, mitigate exposures, and remediate contamination. Ore deposit geology, pre-mining weathering, and burgeoning artisanal mining may combine to cause similar lead poisoning disasters elsewhere globally.
Water Research | 2012
Adam C. Mumford; Julia L. Barringer; William M. Benzel; Pamela A. Reilly; Lily Y. Young
In the Inner Coastal Plain of New Jersey, arsenic (As) is released from glauconitic sediment to carbon- and nutrient-rich shallow groundwater. This As-rich groundwater discharges to a major area stream. We hypothesize that microbes play an active role in the mobilization of As from glauconitic subsurface sediments into groundwater in the Inner Coastal Plain of New Jersey. We have examined the potential impact of microbial activity on the mobilization of arsenic from subsurface sediments into the groundwater at a site on Crosswicks Creek in southern New Jersey. The As contents of sediments 33-90 cm below the streambed were found to range from 15 to 26.4 mg/kg, with siderite forming at depth. Groundwater beneath the streambed contains As at concentrations up to 89 μg/L. Microcosms developed from site sediments released 23 μg/L of As, and active microbial reduction of As(V) was observed in microcosms developed from site groundwater. DNA extracted from site sediments was amplified with primers for the 16S rRNA gene and the arsenate respiratory reductase gene, arrA, and indicated the presence of a diverse anaerobic microbial community, as well as the presence of potential arsenic-reducing bacteria. In addition, high iron (Fe) concentrations in groundwater and the presence of iron-reducing microbial genera suggests that Fe reduction in minerals may provide an additional mechanism for release of associated As, while arsenic-reducing microorganisms may serve to enhance the mobility of As in groundwater at this site.
American Mineralogist | 2016
Bethany L. Ehlmann; Gregg A. Swayze; Ralph E. Milliken; John F. Mustard; Roger Nelson Clark; Scott L. Murchie; George N. Breit; James J. Wray; B. Gondet; F. Poulet; John Carter; Wendy M. Calvin; William M. Benzel; Kimberly D. Seelos
Abstract Cross crater is a 65 km impact crater, located in the Noachian highlands of the Terra Sirenum region of Mars (30°S, 158°W), which hosts aluminum phyllosilicate deposits first detected by the Observatoire pour la Minéralogie, L’Eau, les Glaces et l’Activitié (OMEGA) imaging spectrometer on Mars Express. Using high-resolution data from the Mars Reconnaissance Orbiter, we examine Cross crater’s basin-filling sedimentary deposits. Visible/shortwave infrared (VSWIR) spectra from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) show absorptions diagnostic of alunite. Combining spectral data with high-resolution images, we map a large (10 km × 5 km) alunite-bearing deposit in southwest Cross crater, widespread kaolin-bearing sediments with variable amounts of alunite that are layered in <10 m scale beds, and silica- and/or montmorillonite-bearing deposits that occupy topographically lower, heavily fractured units. The secondary minerals are found at elevations ranging from 700 to 1550 m, forming a discontinuous ring along the crater wall beneath darker capping materials. The mineralogy inside Cross crater is different from that of the surrounding terrains and other martian basins, where Fe/Mg-phyllosilicates and Ca/Mg-sulfates are commonly found. Alunite in Cross crater indicates acidic, sulfurous waters at the time of its formation. Waters in Cross crater were likely supplied by regionally upwelling groundwaters as well as through an inlet valley from a small adjacent depression to the east, perhaps occasionally forming a lake or series of shallow playa lakes in the closed basin. Like nearby Columbus crater, Cross crater exhibits evidence for acid sulfate alteration, but the alteration in Cross is more extensive/complete. The large but localized occurrence of alunite suggests a localized, high-volume source of acidic waters or vapors, possibly supplied by sulfurous (H2S- and/or SO2-bearing) waters in contact with a magmatic source, upwelling steam or fluids through fracture zones. The unique, highly aluminous nature of the Cross crater deposits relative to other martian acid sulfate deposits indicates acid waters, high water throughput during alteration, atypically glassy and/or felsic materials, or a combination of these conditions.
Marine Pollution Bulletin | 2016
Geoffrey S. Plumlee; William M. Benzel; Todd M. Hoefen; Philip L. Hageman; Suzette A. Morman; Timothy J. Reilly; Monique Adams; Cyrus J. Berry; Jeffrey M. Fischer; Irene J. Fisher
Some barrier-island dunes damaged or destroyed by Hurricane Sandys storm surges in October 2012 have been reconstructed using sediments dredged from back bays. These sand-, clay-, and iron sulfide-rich sediments were used to make berm-like cores for the reconstructed dunes, which were then covered by beach sand. In November 2013, we sampled and analyzed partially weathered materials collected from the cores of reconstructed dunes. There are generally low levels of metal toxicants in the reconstructed dune materials. However oxidation of reactive iron sulfides by percolating rainwater produces acid-sulfate pore waters, which evaporate during dry periods to produce efflorescent gypsum and sodium jarosite salts. The results suggest use of sulfidic sediments in dune reconstruction has both drawbacks (e.g., potential to generate acid runoff from dune cores following rainfall, enhanced corrosion of steel bulwarks) and possible benefits (e.g., efflorescent salts may enhance structural integrity).
American Mineralogist | 2018
Gregg A. Swayze; Heather A. Lowers; William M. Benzel; Roger Nelson Clark; Rhonda L. Driscoll; Zac S. Perlman; Todd M. Hoefen; M. Darby Dyar
Abstract Commercially produced vermiculite insulation from Libby, Montana, contains trace levels of asbestiform amphibole, which is known to cause asbestos-related diseases. When vermiculite insulation is found in a building, evaluation for its potential asbestos content traditionally involves collecting a sample from an attic or wall and submitting it for time-consuming analyses at an off-site laboratory. The goal of this study was to determine if in situ near-infrared reflectance measurements could be used to reliably identify the source of vermiculite ore and therefore its potential to contain asbestos. Spectra of 52 expanded ore samples, including attic insulation, commercial packing materials, and horticultural products from Libby, Montana; Louisa, Virginia; Enoree, South Carolina; Palabora, South Africa; and Jiangsu, China, were measured with a portable spectrometer. The mine sources for these vermiculite ores were identified based on collection location, when known, and on differences in elemental composition as measured by electron probe microanalysis. Reflectance spectra of the insulation samples show vibrational overtone and combination absorptions that vary in wavelength position and relative intensity depending on elemental composition and proportions of their constituent micas (i.e., vermiculite ore usually consists of a mixture of hydrobiotite and vermiculite mineral flakes). Band depth ratios of the 1.38/2.32, 1.40/1.42, and 2.24/2.38 μm absorptions allow determination of a vermiculite insulation’s source and detection of its potential to contain amphibole, talc, and/or serpentine impurities. Spectroscopy cannot distinguish asbestiform vs. non-asbestiform amphiboles. However, if the spectrally determined mica composition and mineralogy of an insulation sample is consistent with ore from Libby, then it is likely that some portion of the sodic-calcic amphibole it contains is asbestiform, given that all of the nearly two dozen Libby vermiculite insulation samples examined with scanning electron microscopy in this study contain amphiboles. One sample of expanded vermiculite ore from multiple sources was recognized as a limitation of the spectral method, therefore an additional test (i.e., 2.24 μm absorption position vs. 2.24/2.38 μm band depth ratio) was incorporated into the spectral method to eliminate misclassification caused by such mixtures. With portable field spectrometers, the methodology developed can be used to determine vermiculite insulation’s source and estimate its potential amphibole content, thereby providing low-cost analysis with onsite reporting to property owners.
Archive | 2017
Christopher T. Mills; Carleton R. Bern; Ruth E. Wolf; Andrea L. Foster; Jean M. Morrison; William M. Benzel
It has been shown that EPA Method 3060A does not adequately extract Cr(VI) from solids containing chromium ore processing residue (COPR). We systematically tested modifications to prescribed parameters of EPA 3060A towards improving extraction efficiency of Cr(VI) from NIST SRM 2701, a standard COPR-contaminated soil from New Jersey (NJ). The alkaline extraction fluid leached Al, Si, and B from the prescribed borosilicate glass vessels which interfered with Cr(VI) extraction from COPR. The use of polytetrafluoroethylene (PTFE) vessels increased the extraction efficiency. Intensive grinding of NIST 2701 resulted in the extraction of 730±30 mg kg-1 Cr(VI), which is substantially greater than the certified Cr(VI) value of 551±35 mg kg-1 but still less than the Cr(VI) value of ~3000 mg kg-1 previously determined by X-ray absorption near edge structure (XANES) spectroscopy. Increasing the extraction fluid to sample ratio also increased the efficiency of Cr(VI) extraction. Ratios similar to the 20 mL g-1 prescribed by 3060A resulted in low and highly variable extraction efficiencies. Ratios of 900 mL g-1 or greater resulted in relatively consistent extraction, yielding as much as ~950 mg kg-1 Cr(VI) from intensively ground NIST 2701 after 2.25 hours of extraction. Increasing the extraction time to 48 hours resulted in up to 1274 mg kg-1.
Archive | 2017
William M. Benzel; Shawn C. Fisher; Dale W. Griffin; Daniel K. Jones; Keith A. Loftin; Luke R. Iwanowicz; Timothy J. Reilly; John F. De Wild; Jacob M. Ogorek
Coastal communities are uniquely vulnerable to sea-level rise (SLR) and severe storms such as hurricanes. These events enhance the dispersion and concentration of natural and anthropogenic chemicals and pathogenic microorganisms that could adversely affect the health and resilience of coastal communities and ecosystems in coming years. The U.S. Geological Survey has developed the Sediment-Bound Contaminant Resiliency and Response (SCoRR) strategy to define baseline and post-event sediment-bound environmental health (EH) stressors. These data document the major element chemistry, major and trace chemical composition, total sulfur content, inorganic and organic carbon for soil and sediment samples from selected stations in the northeastern US during the 2015 pilot implementation of the SCoRR strategy in response to Hurricane Joaquin and the 2015 South Carolina flood events. A subset of samples were also analyzed for their methyl mercury content, selected based on bulk mercury and total organic carbon values.
Environmental Science & Technology | 2017
Christopher T. Mills; Carleton R. Bern; Ruth E. Wolf; Andrea L. Foster; Jean M. Morrison; William M. Benzel
It has been shown that EPA Method 3060A does not adequately extract Cr(VI) from chromium ore processing residue (COPR). We modified various parameters of EPA 3060A toward understanding the transformation of COPR minerals in the alkaline extraction and improving extraction of Cr(VI) from NIST SRM 2701, a standard COPR-contaminated soil. Aluminum and Si were the major elements dissolved from NIST 2701, and their concentrations in solution were correlated with Cr(VI). The extraction fluid leached additional Al and Si from the method-prescribed borosilicate glass vessels which appeared to suppress the release of Cr(VI). Use of polytetrafluoroethylene vessels and intensive grinding of NIST 2701 increased the amount of Cr(VI) extracted. These modifications, combined with an increased extraction fluid to sample ratio of ≥900 mL g-1 and 48-h extraction time resulted in a maximum release of 1274 ± 7 mg kg-1 Cr(VI). This is greater than the NIST 2701 certified value of 551 ± 35 mg kg-1 but less than 3050 mg kg-1 Cr(VI) previously estimated by X-ray absorption near edge structure spectroscopy. Some of the increased Cr(VI) may have resulted from oxidation of Cr(III) released from brownmillerite which rapidly transformed during the extractions. Layered-double hydroxides remained stable during extractions and represent a potential residence for unextracted Cr(VI).
Data Series | 2017
Raymond F. Kokaly; Roger Nelson Clark; Gregg A. Swayze; K. Eric Livo; Todd M. Hoefen; Neil Pearson; Richard A. Wise; William M. Benzel; Heather A. Lowers; Rhonda L. Driscoll; Anna J. Klein
Data Series | 2015
Jeffrey M. Fischer; Patrick J. Phillips; Timothy J. Reilly; Michael J. Focazio; Keith A. Loftin; William M. Benzel; Daniel K. Jones; Kelly L. Smalling; Shawn C. Fisher; Irene J. Fisher; Luke R. Iwanowicz; Kristin M. Romanok; Darkus E. Jenkins; Luke Bowers; Adam Boehlke; William T. Foreman; Anna C. Deetz; Lisa G. Carper; Thomas E. Imbrigiotta; Justin E. Birdwell