Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where William M. F. Lee is active.

Publication


Featured researches published by William M. F. Lee.


Nature Genetics | 2006

Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster

Michael Dews; Asal Homayouni; Duonan Yu; Danielle A. Murphy; Cinzia Sevignani; Emma E. Furth; William M. F. Lee; Greg H. Enders; Joshua T. Mendell; Andrei Thomas-Tikhonenko

Human adenocarcinomas commonly harbor mutations in the KRAS and MYC proto-oncogenes and the TP53 tumor suppressor gene. All three genetic lesions are potentially pro-angiogenic, as they sustain production of vascular endothelial growth factor (VEGF). Yet Kras-transformed mouse colonocytes lacking p53 formed indolent, poorly vascularized tumors, whereas additional transduction with a Myc-encoding retrovirus promoted vigorous vascularization and growth. In addition, VEGF levels were unaffected by Myc, but enhanced neovascularization correlated with downregulation of anti-angiogenic thrombospondin-1 (Tsp1) and related proteins, such as connective tissue growth factor (CTGF). Both Tsp1 and CTGF are predicted targets for repression by the miR-17-92 microRNA cluster, which was upregulated in colonocytes coexpressing K-Ras and c-Myc. Indeed, miR-17-92 knockdown with antisense 2′-O-methyl oligoribonucleotides partly restored Tsp1 and CTGF expression; in addition, transduction of Ras-only cells with a miR-17-92–encoding retrovirus reduced Tsp1 and CTGF levels. Notably, miR-17-92–transduced cells formed larger, better-perfused tumors. These findings establish a role for microRNAs in non–cell-autonomous Myc-induced tumor phenotypes.


Journal of Clinical Investigation | 1998

Interleukin-12 and interleukin-18 synergistically induce murine tumor regression which involves inhibition of angiogenesis.

Christina M. Coughlin; Kevin E. Salhany; Maria Wysocka; Etsuko Aruga; Holly L. Kurzawa; Alfred E. Chang; Christopher A. Hunter; Jonathan C. Fox; Giorgio Trinchieri; William M. F. Lee

The antitumor effect and mechanisms activated by murine IL-12 and IL-18, cytokines that induce IFN-gamma production, were studied using engineered SCK murine mammary carcinoma cells. In syngeneic A/J mice, SCK cells expressing mIL-12 or mIL-18 were less tumorigenic and formed tumors more slowly than control cells. Neither SCK.12 nor SCK.18 cells protected significantly against tumorigenesis by distant SCK cells. However, inoculation of the two cell types together synergistically protected 70% of mice from concurrently injected distant SCK cells and 30% of mice from SCK cells established 3 d earlier. Antibody neutralization studies revealed that the antitumor effects of secreted mIL-12 and mIL-18 required IFN-gamma. Interestingly, half the survivors of SCK.12 and/or SCK.18 cells developed protective immunity suggesting that anti-SCK immunity is unlikely to be responsible for protection. Instead, angiogenesis inhibition, assayed by Matrigel implants, appeared to be a property of both SCK.12 and SCK.18 cells and the two cell types together produced significantly greater systemic inhibition of angiogenesis. This suggests that inhibition of tumor angiogenesis is an important part of the systemic antitumor effect produced by mIL-12 and mIL-18.


IEEE Transactions on Biomedical Engineering | 2010

Improved Automatic Detection and Segmentation of Cell Nuclei in Histopathology Images

Yousef Al-Kofahi; Wiem Lassoued; William M. F. Lee; Badrinath Roysam

Automatic segmentation of cell nuclei is an essential step in image cytometry and histometry. Despite substantial progress, there is a need to improve accuracy, speed, level of automation, and adaptability to new applications. This paper presents a robust and accurate novel method for segmenting cell nuclei using a combination of ideas. The image foreground is extracted automatically using a graph-cuts-based binarization. Next, nuclear seed points are detected by a novel method combining multiscale Laplacian-of-Gaussian filtering constrained by distance-map-based adaptive scale selection. These points are used to perform an initial segmentation that is refined using a second graph-cuts-based algorithm incorporating the method of alpha expansions and graph coloring to reduce computational complexity. Nuclear segmentation results were manually validated over 25 representative images (15 in vitro images and 10 in vivo images, containing more than 7400 nuclei) drawn from diverse cancer histopathology studies, and four types of segmentation errors were investigated. The overall accuracy of the proposed segmentation algorithm exceeded 86%. The accuracy was found to exceed 94% when only over- and undersegmentation errors were considered. The confounding image characteristics that led to most detection/segmentation errors were high cell density, high degree of clustering, poor image contrast and noisy background, damaged/irregular nuclei, and poor edge information. We present an efficient semiautomated approach to editing automated segmentation results that requires two mouse clicks per operation.


Immunity | 1998

Tumor Cell Responses to IFNγ Affect Tumorigenicity and Response to IL-12 Therapy and Antiangiogenesis

Christina M. Coughlin; Kevin E. Salhany; Michael S. Gee; Denise C. LaTemple; Serguei V. Kotenko; Xiaojing Ma; Giorgia Gri; Maria Wysocka; Ji Eun Kim; Li Liu; Fang Liao; Joshua M. Farber; Sidney Pestka; Giorgio Trinchieri; William M. F. Lee

Expression of a dominant negative mutant IFNgammaR1 in murine SCK and K1735 tumor cells rendered them relatively unresponsive to IFNgamma in vitro and more tumorigenic and less responsive to IL-12 therapy in vivo. IL-12 induced histologic evidence of ischemic damage only in IFNgamma-responsive tumors, and in vivo Matrigel vascularization assays revealed that while IFNgamma-responsive and -unresponsive tumor cells induced angiogenesis equally well, IL-12 and its downstream mediator IFNgamma only inhibited angiogenesis induced by the responsive cells. IL-12 induced angiogenesis inhibitory activity in the responsive cells, which may be attributable to production of the chemokine IP-10. Thus, IL-12 and IFNgamma inhibit tumor growth by inducing tumor cells to generate antiangiogenic activity.


American Journal of Pathology | 2003

Tumor Vessel Development and Maturation Impose Limits on the Effectiveness of Anti-Vascular Therapy

Michael S. Gee; William N. Procopio; Sosina Makonnen; Michael Feldman; Newman M. Yeilding; William M. F. Lee

The effect of anti-vascular agents on the growth of experimental tumors is well studied. Their impact on tumor vasculature, the primary therapeutic target of these agents, is not as well characterized, even though this primarily determines treatment outcome. Hypothesizing that the response of vessels to therapy is influenced by their stage of maturation, we studied vascular development and the vascular effects of therapy in several transplanted murine tumor models. Based on size, perfusion, endothelial cell (EC) proliferation, and the presence of pericytes, tumor vessels segregated into three categories. Least mature were highly proliferative, nonperfused EC sprouts emanating from functional vessels. Intermediate were small, perfused vessels which, like the angiogenic sprouts, were not covered by pericytes. Most mature were larger vessels, which were predominantly pericyte-covered with quiescent ECs and few associated sprouts. Thus, a developmental order, similar to that described during physiological neovascularization, was evident among vessels in growing tumors. This order markedly influenced tumor vessel response to anti-vascular therapy with recombinant interleukin-12. Therapy reduced tumor vessel density, which was attributable to a decrease in angiogenic sprouts and induction of EC apoptosis in pericyte-negative vessels. Although the great majority of vessels in growing tumors lacked pericyte coverage, selective loss of less mature vessels with therapy significantly increased the fraction of pericyte-positive vessels after therapy. These data indicate that the therapeutic susceptibility of tumor vasculature to recombinant murine IL-12 and, potentially, other anti-vascular agents is limited by its level of maturation. An implication is that tumor susceptibility is similarly limited, making pericyte coverage of tumor vasculature a potential indicator of tumor responsiveness.


Cancer Research | 2004

Conditional ROCK Activation In vivo Induces Tumor Cell Dissemination and Angiogenesis

Daniel R. Croft; Erik Sahai; Georgia Mavria; Shuixing Li; Jeff H. Tsai; William M. F. Lee; Christopher J. Marshall; Michael F. Olson

Progression of tumors to invasive and metastatic forms requires that tumor cells undergo dramatic morphologic changes, a process regulated by Rho GTPases. Elevated expression of RhoA and RhoC, as well as the Rho effector proteins ROCK I and ROCK II, are commonly observed in human cancers and are often associated with more invasive and metastatic phenotypes. To examine how ROCK contributes to the progression of solid tumors, we established a conditionally activated form of ROCK II by fusing the kinase domain to the estrogen receptor hormone-binding domain (ROCK:ER). ROCK:ER-expressing colon carcinoma cells grown as tumors in immunocompromised nude mice organized into discrete clusters surrounding blood vessels. However, ROCK:ER activation resulted in the aggressive dissemination of tumor cells into the surrounding stroma, indicating that increased ROCK signaling is sufficient to promote invasion from solid tumors. In addition, tumors in which ROCK:ER was activated were more highly vascularized, indicating that ROCK contributes to tumor angiogenesis. ROCK:ER activation resulted in changes to epithelial morphology and organization that facilitated motility in vitro, likely by inducing the redistribution of proteins such as ezrin, as well as adherens junction and extracellular matrix-binding proteins. These results suggest that ROCK inhibitors would be useful antimetastatic and antiangiogenic chemotherapeutic agents in tumors associated with elevated RhoA, RhoC, ROCK I, or ROCK II expression.


Journal of Biological Chemistry | 1999

Angiopoietin-1 and -2 Coiled Coil Domains Mediate Distinct Homo-oligomerization Patterns, but Fibrinogen-like Domains Mediate Ligand Activity

William N. Procopio; Paul I. Pelavin; William M. F. Lee; Newman M. Yeilding

Activity of endothelial Tie2 receptor tyrosine kinase is modulated by two naturally occurring, secreted ligands, angiopoietin-1 and -2, which have opposing effects on its phosphorylation. Receptor tyrosine kinase activation requires receptor dimerization/multimerization, which, for many receptors, is mediated by homo-oligomeric ligands binding to and bridging receptor molecules. We show here that angiopoietin-1 and -2 form distinct arrays of disulfide-linked homo-oligomeric complexes. Their mobilities on nonreducing gels suggest that angiopoietin-2 exists predominantly as a homodimer but also forms higher order multimers. In contrast, angiopoietin-1 forms some homotrimers, but predominantly exists in higher order multimers. These two structurally related, 60% homologous ligands are predominantly composed of an amino-terminal coiled coil domain and a carboxyl-terminal fibrinogen-like domain. We show that their distinct oligomerization patterns are determined by their coiled coil domains and, furthermore, that their coiled coil domains, but not their fibrinogen-like domains, are sufficient to mediate formation of disulfide-linked homo-oligomers. In contrast, the differential effects of these ligands on endothelial Tie2 phosphorylation is mediated by their fibrinogen-like domains. We conclude from these studies that the coiled coil and fibrinogen-like domains of the angiopoietins have distinct functions with the coiled coil domain mediating ligand homo-oligomerization and the fibrinogen-like domain mediating ligand activity.


PLOS ONE | 2009

Epidermal growth factor receptor inhibition modulates the microenvironment by vascular normalization to improve chemotherapy and radiotherapy efficacy.

George J. Cerniglia; Nabendu Pore; Jeff H. Tsai; Susan M. Schultz; Rosemarie Mick; Regine Choe; Xiaoman Xing; Turgut Durduran; Arjun G. Yodh; Sydney M. Evans; Cameron J. Koch; Stephen M. Hahn; Harry Quon; Chandra M. Sehgal; William M. F. Lee; Amit Maity

Background Epidermal growth factor receptor (EGFR) inhibitors have shown only modest clinical activity when used as single agents to treat cancers. They decrease tumor cell expression of hypoxia-inducible factor 1-α (HIF-1α) and vascular endothelial growth factor (VEGF). Hypothesizing that this might normalize tumor vasculature, we examined the effects of the EGFR inhibitor erlotinib on tumor vascular function, tumor microenvironment (TME) and chemotherapy and radiotherapy sensitivity. Methodology/Principal Findings Erlotinib treatment of human tumor cells in vitro and mice bearing xenografts in vivo led to decreased HIF-1α and VEGF expression. Treatment altered xenograft vessel morphology assessed by confocal microscopy (following tomato lectin injection) and decreased vessel permeability (measured by Evans blue extravasation), suggesting vascular normalization. Erlotinib increased tumor blood flow measured by Power Doppler ultrasound and decreased hypoxia measured by EF5 immunohistochemistry and tumor O2 saturation measured by optical spectroscopy. Predicting that these changes would improve drug delivery and increase response to chemotherapy and radiation, we performed tumor regrowth studies in nude mice with xenografts treated with erlotinib and either radiotherapy or the chemotherapeutic agent cisplatin. Erlotinib therapy followed by cisplatin led to synergistic inhibition of tumor growth compared with either treatment by itself (p<0.001). Treatment with erlotinib before cisplatin led to greater tumor growth inhibition than did treatment with cisplatin before erlotinib (p = 0.006). Erlotinib followed by radiation inhibited tumor regrowth to a greater degree than did radiation alone, although the interaction between erlotinib and radiation was not synergistic. Conclusions/Significance EGFR inhibitors have shown clinical benefit when used in combination with conventional cytotoxic therapy. Our studies show that targeting tumor cells with EGFR inhibitors may modulate the TME via vascular normalization to increase response to chemotherapy and radiotherapy. These studies suggest ways to assess the response of tumors to EGFR inhibition using non-invasive imaging of the TME.


Cancer Biology & Therapy | 2008

Activated STAT3 is a mediator and biomarker of VEGF endothelial activation.

Shao-Hua Chen; Danielle A. Murphy; Wiem Lassoued; Gavin Thurston; Michael Feldman; William M. F. Lee

STAT3 plays important roles in cell proliferation and survival signaling and is often constitutively activated in transformed cells. In this study, we examined STAT3 activation in endothelial cells (EC) during angiogenic activation and therapeutic angiogenesis inhibition. VEGF stimulation of cultured EC induced STAT3 phosphorylation by a VEGFR2- and Src-dependent mechanism. FGF2 but not PlGF also induced EC STAT3 activation in vitro. Activated STAT3 mediated VEGF induction of EC Bcl-2 and contributed to VEGF protection of EC from apoptosis. In vivo, p-STAT3 was absent by immunohistological staining in the vascular EC of most normal mouse organs but was present in the vessels of mouse and human tumors. Tumor vascular p-STAT3 increased as tumors were induced to overexpress VEGF, indicating that VEGF is an activator of EC p-STAT3 in vivo. Tumor vascular p-STAT3 decreased during angiogenesis inhibition by antagonists of VEGF-VEGFR signaling, VEGF Trap and SU5416, indicating that VEGF contributed to the EC STAT3 activation seen in the tumors prior to treatment and that p-STAT3 may be used to monitor therapy. These studies show that p-STAT3 is a mediator and biomarker of endothelial activation that reports VEGF-VEGFR2 activity and may be useful for studying the pharmacodynamics of targeted angiogenesis inhibitors.


Optics Express | 2007

Hemodynamic responses to antivascular therapy and ionizing radiation assessed by diffuse optical spectroscopies

Ulas Sunar; Sosina Makonnen; Chao Zhou; Turgut Durduran; Guoqiang Yu; Hsing-Wen Wang; William M. F. Lee; Arjun G. Yodh

Diffuse optical methods were used to monitor two different therapies in K1735 malignant mouse melanoma tumor models: anti-vascular therapy and radiation therapy. Anti-vascular therapy induced acute variation in hemodynamic parameters within an hour, and radiation therapy induced longitudinal changes within 2 weeks. During anti-vascular therapy, the drug Combretastatin A-4 3-O-Phosphate (CA4P, 2.5 mg/200 mul PBS/mouse) significantly decreased tissue blood flow (65%) and blood oxygenation (38%) one hour after injection. In the longitudinal study, single-fraction ionizing radiation (12 Gy x 1) induced significant reduction of tissue blood flow (36%) and blood oxygenation (24%) 14 days after radiation. The results correlated well with contrast enhanced ultrasound, tumor histology, and a nitroimidazole hypoxia marker (EF5). The research provides further evidence that noninvasive diffuse optical spectroscopies can be useful tools for monitoring cancer therapy in vivo.

Collaboration


Dive into the William M. F. Lee's collaboration.

Top Co-Authors

Avatar

Chandra M. Sehgal

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Feldman

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Jeff H. Tsai

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maria Wysocka

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Sosina Makonnen

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Andrew K.W. Wood

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge