Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where William M. Hempel is active.

Publication


Featured researches published by William M. Hempel.


PLOS ONE | 2013

Lead Exposure Induces Telomere Instability in Human Cells

Géraldine Pottier; Muriel Viau; Michelle Ricoul; Grace Shim; Marion Bellamy; Corina Cuceu; William M. Hempel; Laure Sabatier

Lead (Pb) is an important environmental contaminant due to its widespread use over many centuries. While it affects primarily every organ system of the body, the most pernicious effects of Pb are on the central nervous system leading to cognitive and behavioral modification. Despite decades of research, the mechanisms responsible for Pb toxicity remain poorly understood. Recent work has suggested that Pb exposure may have consequences on chromosomal integrity as it was shown that Pb exposure leads to the generation of γH2Ax foci, a well-established biomarker for DNA double stranded break (DSB formation). As the chromosomal localization of γH2Ax foci plays an important role in determining the molecular mechanism responsible for their formation, we examined the localization of Pb-induced foci with respect to telomeres. Indeed, short or dysfunctional telomeres (uncapped or damaged telomeres) may be recognized as DSB by the DNA repair machinery, leading to “telomere-Induced Foci” (TIFs). In the current study, we show that while Pb exposure did not increase intra-chromosomal foci, it significantly induced TIFs, leading in some cases, to chromosomal abnormalities including telomere loss. The evidence suggests that these chromosomal abnormalities are likely due to perturbation of telomere replication, in particular on the lagging DNA strand. We propose a mechanism by which Pb exposure leads to the loss of telomere maintenance. As numerous studies have demonstrated a role for telomere maintenance in brain development and tissue homeostasis, our results suggest a possible mechanism for lead-induced neurotoxicity.


International Journal of Radiation Oncology Biology Physics | 2015

Detection and Automated Scoring of Dicentric Chromosomes in Nonstimulated Lymphocyte Prematurely Condensed Chromosomes After Telomere and Centromere Staining

Radhia M'kacher; Elie Maalouf; Michelle Ricoul; Leonhard Heidingsfelder; Ionna Karachristou; Eric Laplagne; William M. Hempel; Bruno Colicchio; Alain Dieterlen; Gabriel E. Pantelias; Laure Sabatier

PURPOSE To combine telomere and centromere (TC) staining of premature chromosome condensation (PCC) fusions to identify dicentrics, centric rings, and acentric chromosomes, making possible the realization of a dose-response curve and automation of the process. METHODS AND MATERIALS Blood samples from healthy donors were exposed to (60)Co irradiation at varying doses up to 8 Gy, followed by a repair period of 8 hours. Premature chromosome condensation fusions were carried out, and TC staining using peptide nucleic acid probes was performed. Chromosomal aberration (CA) scoring was carried out manually and automatically using PCC-TCScore software, developed in our laboratory. RESULTS We successfully optimized the hybridization conditions and image capture parameters, to increase the sensitivity and effectiveness of CA scoring. Dicentrics, centric rings, and acentric chromosomes were rapidly and accurately detected, leading to a linear-quadratic dose-response curve by manual scoring at up to 8 Gy. Using PCC-TCScore software for automatic scoring, we were able to detect 95% of dicentrics and centric rings. CONCLUSION The introduction of TC staining to the PCC fusion technique has made possible the rapid scoring of unstable CAs, including dicentrics, with a level of accuracy and ease not previously possible. This new approach can be used for biological dosimetry in radiation emergency medicine, where the rapid and accurate detection of dicentrics is a high priority using automated scoring. Because there is no culture time, this new approach can also be used for the follow-up of patients treated by genotoxic therapy, creating the possibility to perform the estimation of induced chromosomal aberrations immediately after the blood draw.


Mutation Research | 2014

New tool for biological dosimetry: reevaluation and automation of the gold standard method following telomere and centromere staining.

Radhia M’kacher; Elie Maalouf; Michelle Ricoul; Leonhard Heidingsfelder; Eric Laplagne; Corina Cuceu; William M. Hempel; Bruno Colicchio; Alain Dieterlen; Laure Sabatier

PURPOSE The dicentric chromosome (dicentric) assay is the international gold-standard method for biological dosimetry and classification of genotoxic agents. The introduction of telomere and centromere (TC) staining offers the potential to render dicentric scoring more efficient and robust. In this study, we improved the detection of dicentrics and all unstable chromosomal aberrations (CA) leading to a significant reevaluation of the dose-effect curve and developed an automated approach following TC staining. MATERIAL AND METHODS Blood samples from 16 healthy donors were exposed to (137)Cs at 8 doses from 0.1 to 6Gy. CA were manually and automatically scored following uniform (Giemsa) or TC staining. The detection of centromeric regions and telomeric sequences using PNA probes allowed the detection of all unstable CA: dicentrics, centric and acentric rings, and all acentric fragments (with 2, 4 or no telomeres) leading to the precise quantification of estimated double strand breaks (DSB). RESULTS Manual scoring following TC staining revealed a significantly higher frequency of dicentrics (p<10(-3)) (up to 30%) and estimated DSB (p<10(-4)) compared to uniform staining due to improved detection of dicentrics with centromeres juxtaposed with other centromeres or telomeres. This improvement permitted the development of the software, TCScore, that detected 95% of manually scored dicentrics compared to 50% for the best currently available software (DCScore™). CONCLUSION The use of TC staining has permitted a reevaluation of the dose-response curve and the highly efficient automation of the scoring process, marking a new step in the management and follow-up of populations exposed to genotoxic agents including ionizing radiation.


Mutation Research-reviews in Mutation Research | 2014

Crosstalk between telomere maintenance and radiation effects: A key player in the process of radiation-induced carcinogenesis

Grace Shim; Michelle Ricoul; William M. Hempel; Edouard I. Azzam; Laure Sabatier

It is well established that ionizing radiation induces chromosomal damage, both following direct radiation exposure and via non-targeted (bystander) effects, activating DNA damage repair pathways, of which the proteins are closely linked to telomeric proteins and telomere maintenance. Long-term propagation of this radiation-induced chromosomal damage during cell proliferation results in chromosomal instability. Many studies have shown the link between radiation exposure and radiation-induced changes in oxidative stress and DNA damage repair in both targeted and non-targeted cells. However, the effect of these factors on telomeres, long established as guardians of the genome, still remains to be clarified. In this review, we will focus on what is known about how telomeres are affected by exposure to low- and high-LET ionizing radiation and during proliferation, and will discuss how telomeres may be a key player in the process of radiation-induced carcinogenesis.


Mutation Research-genetic Toxicology and Environmental Mutagenesis | 2015

Global quantification of γH2AX as a triage tool for the rapid estimation of received dose in the event of accidental radiation exposure

Muriel Viau; Isabelle Testard; Grace Shim; Luc Morat; Marie Delna Normil; William M. Hempel; Laure Sabatier

The phosphorylation of the H2AX histone to form γH2AX foci has been shown to be an accurate biomarker of ionizing radiation exposure. It is well established that there is a one-to-one correlation between the number of γH2AX foci and radiation-induced double strand breaks in cellular DNA, which can be translated to the received dose. However, manual counting of foci is time-consuming, and cannot accommodate high throughput analysis required to obtain rapid results for medical triage purposes in the case of large-scale accidental exposure. Furthermore, the accuracy of γH2AX measurements could potentially be compromised by delays between the time of exposure and analysis of results, as well as inter-cellular and inter-individual variability of this biological response. To evaluate more rapid approaches of quantifying γH2AX for use in an emergency situation, and to determine the impact of inter-individual variability, we compared two methods of global γH2AX fluorescence quantification (low magnification immunofluorescence microscopy and flow cytometry) to the well-established γH2AX foci scoring method in human primary fibroblasts. All three approaches were well correlated, indicating that global γH2AX fluorescence measurements are suitable for dose estimation. For rapid triage in an emergency situation, we propose the use of flow cytometry, as it is more highly correlated with foci scoring and because of the speed and ease of the method. Dose response curves (0.25-6Gy) using flow cytometry measurements showed that inter-individual variability in global γH2AX fluorescence is statistically insignificant at 4h post-irradiation. Based on these data, we propose calibration curves that can be applied to populations exposed to moderate radiation doses to estimate individual received doses, independent of individual radiosensitivity, at this specific time point post-irradiation using human fibroblasts and lymphocytes. Furthermore, we define three triage categories that could facilitate immediate and follow-up care in the case of a radiological accident.


Scientific Reports | 2016

Replication Timing of Human Telomeres is Conserved during Immortalization and Influenced by Respective Subtelomeres

Laure Piqueret-Stephan; Michelle Ricoul; William M. Hempel; Laure Sabatier

Telomeres are specific structures that protect chromosome ends and act as a biological clock, preventing normal cells from replicating indefinitely. Mammalian telomeres are replicated throughout S-phase in a predetermined order. However, the mechanism of this regulation is still unknown. We wished to investigate this phenomenon under physiological conditions in a changing environment, such as the immortalization process to better understand the mechanism for its control. We thus examined the timing of human telomere replication in normal and SV40 immortalized cells, which are cytogenetically very similar to cancer cells. We found that the timing of telomere replication was globally conserved under different conditions during the immortalization process. The timing of telomere replication was conserved despite changes in telomere length due to endogenous telomerase reactivation, in duplicated homologous chromosomes, and in rearranged chromosomes. Importantly, translocated telomeres, possessing their initial subtelomere, retained the replication timing of their homolog, independently of the proportion of the translocated arm, even when the remaining flanking DNA is restricted to its subtelomere, the closest chromosome-specific sequences (inferior to 500 kb). Our observations support the notion that subtelomere regions strongly influence the replication timing of the associated telomere.


Frontiers in Oncology | 2016

Comparison of Individual Radiosensitivity to γ-Rays and Carbon Ions

Grace Shim; Marie Delna Normil; Isabelle Testard; William M. Hempel; Michelle Ricoul; Laure Sabatier

Carbon ions are an up-and-coming ion species, currently being used in charged particle radiotherapy. As it is well established that there are considerable interindividual differences in radiosensitivity in the general population that can significantly influence clinical outcomes of radiotherapy, we evaluate the degree of these differences in the context of carbon ion therapy compared with conventional radiotherapy. In this study, we evaluate individual radiosensitivity following exposure to carbon-13 ions or γ-rays in peripheral blood lymphocytes of healthy individuals based on the frequency of ionizing radiation (IR)-induced DNA double strand breaks (DSBs) that was either misrepaired or left unrepaired to form chromosomal aberrations (CAs) (simply referred to here as DSBs for brevity). Levels of DSBs were estimated from the scoring of CAs visualized with telomere/centromere-fluorescence in situ hybridization (TC-FISH). We examine radiosensitivity at the dose of 2 Gy, a routinely administered dose during fractionated radiotherapy, and we determined that a wide range of DSBs were induced by the given dose among healthy individuals, with highly radiosensitive individuals harboring more IR-induced breaks in the genome than radioresistant individuals following exposure to the same dose. Furthermore, we determined the relative effectiveness of carbon irradiation in comparison to γ-irradiation in the induction of DSBs at each studied dose (isodose effect), a quality we term “relative dose effect” (RDE). This ratio is advantageous, as it allows for simple comparison of dose–response curves. At 2 Gy, carbon irradiation was three times more effective in inducing DSBs compared with γ-irradiation (RDE of 3); these results were confirmed using a second cytogenetic technique, multicolor-FISH. We also analyze radiosensitivity at other doses (0.2–15 Gy), to represent hypo- and hyperfractionation doses and determined that RDE is dose dependent: high ratios at low doses, and approaching 1 at high doses. These results could have clinical implications as IR-induced DNA damage and the ensuing CAs and genomic instability can have significant cellular consequences that could potentially have profound implications for long-term human health after IR exposure, such as the emergence of secondary cancers and other pathobiological conditions after radiotherapy.


Cancers | 2018

Chromosomal Instability in Hodgkin Lymphoma: An In-Depth Review and Perspectives

Corina Cuceu; William M. Hempel; Laure Sabatier; Jacques Bosq; Patrice Carde; Radhia M’kacher

The study of Hodgkin lymphoma (HL), with its unique microenvironment and long-term follow-up, has provided exceptional insights into several areas of tumor biology. Findings in HL have not only improved our understanding of human carcinogenesis, but have also pioneered its translation into the clinics. HL is a successful paradigm of modern treatment strategies. Nonetheless, approximately 15–20% of patients with advanced stage HL still die following relapse or progressive disease and a similar proportion of patients are over-treated, leading to treatment-related late sequelae, including solid tumors and organ dysfunction. The malignant cells in HL are characterized by a highly altered genomic landscape with a wide spectrum of genomic alterations, including somatic mutations, copy number alterations, complex chromosomal rearrangements, and aneuploidy. Here, we review the chromosomal instability mechanisms in HL, starting with the cellular origin of neoplastic cells and the mechanisms supporting HL pathogenesis, focusing particularly on the role of the microenvironment, including the influence of viruses and macrophages on the induction of chromosomal instability in HL. We discuss the emerging possibilities to exploit these aberrations as prognostic biomarkers and guides for personalized patient management.


Scientific Reports | 2017

Transmission of Induced Chromosomal Aberrations through Successive Mitotic Divisions in Human Lymphocytes after In Vitro and In Vivo Radiation

Akram Kaddour; Bruno Colicchio; Diane Buron; Elie Maalouf; Eric Laplagne; Claire Borie; Michelle Ricoul; Aude Lenain; William M. Hempel; Luc Morat; Mustafa Al Jawhari; Corina Cuceu; Leonhard Heidingsfelder; Eric Jeandidier; Georges Deschênes; Alain Dieterlen; Michèle El May; T. Girinsky; Annelise Bennaceur-Griscelli; Patrice Carde; Laure Sabatier; Radhia M’kacher

The mechanisms behind the transmission of chromosomal aberrations (CA) remain unclear, despite a large body of work and major technological advances in chromosome identification. We reevaluated the transmission of CA to second- and third-division cells by telomere and centromere (TC) staining followed by M-FISH. We scored CA in lymphocytes of healthy donors after in vitro irradiation and those of cancer patients treated by radiation therapy more than 12 years before. Our data demonstrate, for the first time, that dicentric chromosomes (DCs) decreased by approximately 50% per division. DCs with two centromeres in close proximity were more efficiently transmitted, representing 70% of persistent DCs in ≥M3 cells. Only 1/3 of acentric chromosomes (ACs), ACs with four telomeres, and interstitial ACs, were paired in M2 cells and associated with specific DCs configurations. In lymphocytes of cancer patients, 82% of detected DCs were characterized by these specific configurations. Our findings demonstrate the high stability of DCs with two centromeres in close proximity during cell division. The frequency of telomere deletion increased during cell cycle progression playing an important role in chromosomal instability. These findings could be exploited in the follow-up of exposed populations.


Cancers | 2018

The Transition between Telomerase and ALT Mechanisms in Hodgkin Lymphoma and Its Predictive Value in Clinical Outcomes

Radhia M’kacher; Corina Cuceu; Mustafa Al Jawhari; Luc Morat; Monika Frenzel; Grace Shim; Aude Lenain; William M. Hempel; Steffen Junker; T. Girinsky; Bruno Colicchio; Alain Dieterlen; Leonhard Heidingsfelder; Claire Borie; Noufissa Oudrhiri; Annelise Bennaceur-Griscelli; Olivier Morales; Sarah Renaud; Zoé Van de Wyngaert; Eric Jeandidier; Nadira Delhem; Patrice Carde

Background: We analyzed telomere maintenance mechanisms (TMMs) in lymph node samples from HL patients treated with standard therapy. The TMMs correlated with clinical outcomes of patients. Materials and Methods: Lymph node biopsies obtained from 38 HL patients and 24 patients with lymphadenitis were included in this study. Seven HL cell lines were used as in vitro models. Telomerase activity (TA) was assessed by TRAP assay and verified through hTERT immunofluorescence expression; alternative telomere lengthening (ALT) was also assessed, along with EBV status. Results: Both TA and ALT mechanisms were present in HL lymph nodes. Our findings were reproduced in HL cell lines. The highest levels of TA were expressed in CD30−/CD15− cells. Small cells were identified with ALT and TA. Hodgkin and Reed Sternberg cells contained high levels of PML bodies, but had very low hTERT expression. There was a significant correlation between overall survival (p < 10−3), event-free survival (p < 10−4), and freedom from progression (p < 10−3) and the presence of an ALT profile in lymph nodes of EBV+ patients. Conclusion: The presence of both types of TMMs in HL lymph nodes and in HL cell lines has not previously been reported. TMMs correlate with the treatment outcome of EBV+ HL patients.

Collaboration


Dive into the William M. Hempel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luc Morat

Institut Gustave Roussy

View shared research outputs
Top Co-Authors

Avatar

T. Girinsky

Institut Gustave Roussy

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Claire Borie

University of Paris-Sud

View shared research outputs
Top Co-Authors

Avatar

Jacques Bosq

Institut Gustave Roussy

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Olivier Morales

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

A. Kaddour

Tunis El Manar University

View shared research outputs
Researchain Logo
Decentralizing Knowledge