Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where William O. Pickrell is active.

Publication


Featured researches published by William O. Pickrell.


American Journal of Human Genetics | 2016

De Novo Mutations in SLC1A2 and CACNA1A Are Important Causes of Epileptic Encephalopathies

Candace T. Myers; Jacinta M. McMahon; Amy Schneider; Slavé Petrovski; Andrew S. Allen; Gemma L. Carvill; Matthew Zemel; Julia Saykally; Amy Lacroix; Erin L. Heinzen; Georgina Hollingsworth; Marina Nikanorova; Mark Corbett; Jozef Gecz; David Coman; Jeremy L. Freeman; Sophie Calvert; Deepak Gill; Patrick W. Carney; Tally Lerman-Sagie; Hugo Sampaio; Patrick Cossette; Norman Delanty; Dennis J. Dlugos; Evan E. Eichler; Michael P. Epstein; Tracy A. Glauser; Michael Johnson; Ruben Kuzniecky; Anthony G Marson

Epileptic encephalopathies (EEs) are the most clinically important group of severe early-onset epilepsies. Next-generation sequencing has highlighted the crucial contribution of de novo mutations to the genetic architecture of EEs as well as to their underlying genetic heterogeneity. Our previous whole-exome sequencing study of 264 parent-child trios revealed more than 290 candidate genes in which only a single individual had a de novo variant. We sought to identify additional pathogenic variants in a subset (n = 27) of these genes via targeted sequencing in an unsolved cohort of 531 individuals with a diverse range of EEs. We report 17 individuals with pathogenic variants in seven of the 27 genes, defining a genetic etiology in 3.2% of this unsolved cohort. Our results provide definitive evidence that de novo mutations in SLC1A2 and CACNA1A cause specific EEs and expand the compendium of clinically relevant genotypes for GABRB3. We also identified EEs caused by genetic variants in ALG13, DNM1, and GNAO1 and report a mutation in IQSEC2. Notably, recurrent mutations accounted for 7/17 of the pathogenic variants identified. As a result of high-depth coverage, parental mosaicism was identified in two out of 14 cases tested with mutant allelic fractions of 5%-6% in the unaffected parents, carrying significant reproductive counseling implications. These results confirm that dysregulation in diverse cellular neuronal pathways causes EEs, and they will inform the diagnosis and management of individuals with these devastating disorders.


Lancet Neurology | 2017

Ultra-rare genetic variation in common epilepsies: a case-control sequencing study

Andrew S. Allen; Susannah T. Bellows; Samuel F. Berkovic; Joshua Bridgers; Rosemary Burgess; Gianpiero L. Cavalleri; Seo-Kyung Chung; Patrick Cossette; Norman Delanty; Dennis J. Dlugos; Michael P. Epstein; Catharine Freyer; David B. Goldstein; Erin L. Heinzen; Michael S. Hildebrand; Michael R. Johnson; Ruben Kuzniecky; Daniel H. Lowenstein; Anthony G Marson; Richard Mayeux; Caroline Mebane; Mefford Hc; Terence J. O'Brien; Ruth Ottman; Steven Petrou; Slavgé Petrovski; William O. Pickrell; Annapurna Poduri; Rodney A. Radtke; Mark I. Rees

BACKGROUND Despite progress in understanding the genetics of rare epilepsies, the more common epilepsies have proven less amenable to traditional gene-discovery analyses. We aimed to assess the contribution of ultra-rare genetic variation to common epilepsies. METHODS We did a case-control sequencing study with exome sequence data from unrelated individuals clinically evaluated for one of the two most common epilepsy syndromes: familial genetic generalised epilepsy, or familial or sporadic non-acquired focal epilepsy. Individuals of any age were recruited between Nov 26, 2007, and Aug 2, 2013, through the multicentre Epilepsy Phenome/Genome Project and Epi4K collaborations, and samples were sequenced at the Institute for Genomic Medicine (New York, USA) between Feb 6, 2013, and Aug 18, 2015. To identify epilepsy risk signals, we tested all protein-coding genes for an excess of ultra-rare genetic variation among the cases, compared with control samples with no known epilepsy or epilepsy comorbidity sequenced through unrelated studies. FINDINGS We separately compared the sequence data from 640 individuals with familial genetic generalised epilepsy and 525 individuals with familial non-acquired focal epilepsy to the same group of 3877 controls, and found significantly higher rates of ultra-rare deleterious variation in genes established as causative for dominant epilepsy disorders (familial genetic generalised epilepsy: odd ratio [OR] 2·3, 95% CI 1·7-3·2, p=9·1 × 10-8; familial non-acquired focal epilepsy 3·6, 2·7-4·9, p=1·1 × 10-17). Comparison of an additional cohort of 662 individuals with sporadic non-acquired focal epilepsy to controls did not identify study-wide significant signals. For the individuals with familial non-acquired focal epilepsy, we found that five known epilepsy genes ranked as the top five genes enriched for ultra-rare deleterious variation. After accounting for the control carrier rate, we estimate that these five genes contribute to the risk of epilepsy in approximately 8% of individuals with familial non-acquired focal epilepsy. Our analyses showed that no individual gene was significantly associated with familial genetic generalised epilepsy; however, known epilepsy genes had lower p values relative to the rest of the protein-coding genes (p=5·8 × 10-8) that were lower than expected from a random sampling of genes. INTERPRETATION We identified excess ultra-rare variation in known epilepsy genes, which establishes a clear connection between the genetics of common and rare, severe epilepsies, and shows that the variants responsible for epilepsy risk are exceptionally rare in the general population. Our results suggest that the emerging paradigm of targeting of treatments to the genetic cause in rare devastating epilepsies might also extend to a proportion of common epilepsies. These findings might allow clinicians to broadly explain the cause of these syndromes to patients, and lay the foundation for possible precision treatments in the future. FUNDING National Institute of Neurological Disorders and Stroke (NINDS), and Epilepsy Research UK.


Human Molecular Genetics | 2013

GLRB is the third major gene of effect in hyperekplexia

Seo-Kyung Chung; Anna Bode; Thomas D. Cushion; Rhys Huw Thomas; Charlotte Hunt; Sian-Elin Wood; William O. Pickrell; Cheney Drew; Sumimasa Yamashita; Rita Shiang; Steffen Leiz; Ann-Carolyn Longhardt; Vera Raile; Bernhard Weschke; Ratna D. Puri; Ishwar C. Verma; Robert J. Harvey; Didi D. Ratnasinghe; Michael J. Parker; Chris Rittey; Amira Masri; Lokesh Lingappa; Owain W. Howell; Jean-François Vanbellinghen; Jonathan G. L. Mullins; Joseph W. Lynch; Mark I. Rees

Glycinergic neurotransmission is a major inhibitory influence in the CNS and its disruption triggers a paediatric and adult startle disorder, hyperekplexia. The postsynaptic α(1)-subunit (GLRA1) of the inhibitory glycine receptor (GlyR) and the cognate presynaptic glycine transporter (SLC6A5/GlyT2) are well-established genes of effect in hyperekplexia. Nevertheless, 52% of cases (117 from 232) remain gene negative and unexplained. Ligand-gated heteropentameric GlyRs form chloride ion channels that contain the α(1) and β-subunits (GLRB) in a 2α(1):3β configuration and they form the predominant population of GlyRs in the postnatal and adult human brain, brainstem and spinal cord. We screened GLRB through 117 GLRA1- and SLC6A5-negative hyperekplexia patients using a multiplex-polymerase chain reaction and Sanger sequencing approach. The screening identified recessive and dominant GLRB variants in 12 unrelated hyperekplexia probands. This primarily yielded homozygous null mutations, with nonsense (n = 3), small indel (n = 1), a large 95 kb deletion (n = 1), frameshifts (n = 1) and one recurrent splicing variant found in four cases. A further three cases were found with two homozygous and one dominant GLRB missense mutations. We provide strong evidence for the pathogenicity of GLRB mutations using splicing assays, deletion mapping, cell-surface biotinylation, expression studies and molecular modelling. This study describes the definitive assignment of GLRB as the third major gene for hyperekplexia and impacts on the genetic stratification and biological causation of this neonatal/paediatric disorder. Driven principally by consanguineous homozygosity of GLRB mutations, the study reveals long-term additive phenotypic outcomes for affected cases such as severe apnoea attacks, learning difficulties and developmental delay.


Journal of Neurology, Neurosurgery, and Psychiatry | 2013

Weight change associated with antiepileptic drugs

William O. Pickrell; Arron Lacey; Rhys Huw Thomas; Philip E. M. Smith; Mark I. Rees

Aim To investigate antiepileptic drug (AED)-related weight changes in patients with epilepsy through a retrospective observational study. Method We analysed the anonymised electronic primary care records of 1.1 million adult patients in Wales. We included patients aged 18 years and over with a diagnosis of epilepsy, whose body weight had been measured up to 12 months before starting, and between 3 and 12 months after starting, one of five AEDs. We calculated the weight difference after starting the AED for each patient. Results 1423 patients were identified in total. The mean difference between body weight after and before starting each AED (together with 95% CI and p values for no difference) were: carbamazepine (CBZ) 0.43 (−0.19 to 1.05) p=0.17; lamotrigine (LTG) 0.31 (−0.38 to 1.00) p=0.38; levetiracetam (LEV) 1.00 (0.16 to 1.84) p=0.02; sodium valproate (VPA) 0.74 (0.10 to 1.38) p=0.02; topiramate (TPM) −2.30 (−4.27 to −0.33) p=0.02. Conclusions LEV and VPA were associated with significant weight gain, TPM was associated with significant weight loss, and LTG and CBZ were not associated with significant weight change.


PLOS Neglected Tropical Diseases | 2014

Human African Trypanosomiasis presenting at least 29 years after infection—what can this teach us about the pathogenesis and control of this neglected tropical disease?

Darshan Sudarshi; Sarah Lawrence; William O. Pickrell; Vinay Eligar; Richard Walters; Shumonta Quaderi; Alice Walker; Paul Capewell; Caroline Clucas; Angela Vincent; Francesco Checchi; Annette MacLeod; Michael Brown

The World Health Organization (WHO) has recently announced its plan to eliminate Human African trypanosomiasis (HAT). The plans main focus is on the Trypanosoma brucei gambiense subspecies, which causes 97% of cases [1]. However, total elimination from certain areas has proved extremely difficult previously; there has been ongoing parasite detection in several foci in West Africa, despite effective screening programmes. This has focussed interest on the potential role of asymptomatic human carriers in contributing to transmission. In this report, we present a unique case of a patient harbouring the parasite for more than three decades before developing stage 2 sleeping sickness [2].


Journal of Biological Chemistry | 2013

New Hyperekplexia Mutations Provide Insight into Glycine Receptor Assembly, Trafficking, and Activation Mechanisms

Anna Bode; Sian-Elin Wood; Jonathon G.L. Mullins; Angelo Keramidas; Thomas D. Cushion; Rhys Huw Thomas; William O. Pickrell; Cheney Drew; Amira Masri; Elizabeth A. Jones; Grace Vassallo; Alfred Peter Born; Fusun Alehan; Sharon Aharoni; Gerald Bannasch; Marius Bartsch; Bülent Kara; Amanda Krause; Elie G. Karam; Stephanie Matta; Vivek Jain; Hanna Mandel; Michael Freilinger; Gail E. Graham; Emma Hobson; Sue Chatfield; Catherine Vincent-Delorme; Jubran E. Rahme; Zaid Afawi; Samuel F. Berkovic

Background: Hyperekplexia mutations have provided much information about glycine receptor structure and function. Results: We identified and characterized nine new mutations. Dominant mutations resulted in spontaneous activation, whereas recessive mutations precluded surface expression. Conclusion: These data provide insight into glycine receptor activation mechanisms and surface expression determinants. Significance: The results enhance our understanding of hyperekplexia pathology and glycine receptor structure-function. Hyperekplexia is a syndrome of readily provoked startle responses, alongside episodic and generalized hypertonia, that presents within the first month of life. Inhibitory glycine receptors are pentameric ligand-gated ion channels with a definitive and clinically well stratified linkage to hyperekplexia. Most hyperekplexia cases are caused by mutations in the α1 subunit of the human glycine receptor (hGlyR) gene (GLRA1). Here we analyzed 68 new unrelated hyperekplexia probands for GLRA1 mutations and identified 19 mutations, of which 9 were novel. Electrophysiological analysis demonstrated that the dominant mutations p.Q226E, p.V280M, and p.R414H induced spontaneous channel activity, indicating that this is a recurring mechanism in hGlyR pathophysiology. p.Q226E, at the top of TM1, most likely induced tonic activation via an enhanced electrostatic attraction to p.R271 at the top of TM2, suggesting a structural mechanism for channel activation. Receptors incorporating p.P230S (which is heterozygous with p.R65W) desensitized much faster than wild type receptors and represent a new TM1 site capable of modulating desensitization. The recessive mutations p.R72C, p.R218W, p.L291P, p.D388A, and p.E375X precluded cell surface expression unless co-expressed with α1 wild type subunits. The recessive p.E375X mutation resulted in subunit truncation upstream of the TM4 domain. Surprisingly, on the basis of three independent assays, we were able to infer that p.E375X truncated subunits are incorporated into functional hGlyRs together with unmutated α1 or α1 plus β subunits. These aberrant receptors exhibit significantly reduced glycine sensitivity. To our knowledge, this is the first suggestion that subunits lacking TM4 domains might be incorporated into functional pentameric ligand-gated ion channel receptors.


Neurobiology of Disease | 2014

A novel GABRG2 mutation, p.R136*, in a family with GEFS+ and extended phenotypes.

Ann Johnston; Jing-Qiong Kang; Wangzhen Shen; William O. Pickrell; Thomas D. Cushion; Jeffrey S. Davies; Kristin Baer; Jonathan G. L. Mullins; C. L. Hammond; Seo-Kyung Chung; Rhys Huw Thomas; C. White; Philip E. M. Smith; Robert L. Macdonald; Mark I. Rees

Genetic mutations in voltage-gated and ligand-gated ion channel genes have been identified in a small number of Mendelian families with genetic generalised epilepsies (GGEs). They are commonly associated with febrile seizures (FS), childhood absence epilepsy (CAE) and particularly with generalised or genetic epilepsy with febrile seizures plus (GEFS+). In clinical practice, despite efforts to categorise epilepsy and epilepsy families into syndromic diagnoses, many generalised epilepsies remain unclassified with a presumed genetic basis. During the systematic collection of epilepsy families, we assembled a cohort of families with evidence of GEFS+ and screened for variations in the γ2 subunit of the γ-aminobutyric acid (GABA) type A receptor gene (GABRG2). We detected a novel GABRG2(p.R136*) premature translation termination codon in one index-case from a two-generation nuclear family, presenting with an unclassified GGE, a borderline GEFS+ phenotype with learning difficulties and extended behavioural presentation. The GABRG2(p.R136*) mutation segregates with the febrile seizure component of this familys GGE and is absent in 190 healthy control samples. In vitro expression assays demonstrated that γ2(p.R136*) subunits were produced, but had reduced cell-surface and total expression. When γ2(p.R136*) subunits were co-expressed with α1 and β2 subunits in HEK 293T cells, GABA-evoked currents were reduced. Furthermore, γ2(p.R136*) subunits were highly-expressed in intracellular aggregations surrounding the nucleus and endoplasmic reticulum (ER), suggesting compromised receptor trafficking. A novel GABRG2(p.R136*) mutation extends the spectrum of GABRG2 mutations identified in GEFS+ and GGE phenotypes, causes GABAA receptor dysfunction, and represents a putative epilepsy mechanism.


EBioMedicine | 2015

Genome-wide Polygenic Burden of Rare Deleterious Variants in Sudden Unexpected Death in Epilepsy.

Costin Leu; Simona Balestrini; Bridget Maher; Laura Hernandez-Hernandez; Padhraig Gormley; Eija Hämäläinen; Kristin Heggeli; Natasha E. Schoeler; Jan Novy; Joseph Willis; Vincent Plagnol; Rachael Ellis; Eleanor Reavey; Mary O'Regan; William O. Pickrell; Rhys Huw Thomas; Seo-Kyung Chung; Norman Delanty; Jacinta M. McMahon; Stephen Malone; Lynette G. Sadleir; Samuel F. Berkovic; Lina Nashef; Sameer M. Zuberi; Mark I. Rees; Gianpiero L. Cavalleri; Josemir W. Sander; Elaine Hughes; J. Helen Cross; Ingrid E. Scheffer

Sudden unexpected death in epilepsy (SUDEP) represents the most severe degree of the spectrum of epilepsy severity and is the commonest cause of epilepsy-related premature mortality. The precise pathophysiology and the genetic architecture of SUDEP remain elusive. Aiming to elucidate the genetic basis of SUDEP, we analysed rare, protein-changing variants from whole-exome sequences of 18 people who died of SUDEP, 87 living people with epilepsy and 1479 non-epilepsy disease controls. Association analysis revealed a significantly increased genome-wide polygenic burden per individual in the SUDEP cohort when compared to epilepsy (P = 5.7 × 10− 3) and non-epilepsy disease controls (P = 1.2 × 10− 3). The polygenic burden was driven both by the number of variants per individual, and over-representation of variants likely to be deleterious in the SUDEP cohort. As determined by this study, more than a thousand genes contribute to the observed polygenic burden within the framework of this study. Subsequent gene-based association analysis revealed five possible candidate genes significantly associated with SUDEP or epilepsy, but no one single gene emerges as common to the SUDEP cases. Our findings provide further evidence for a genetic susceptibility to SUDEP, and suggest an extensive polygenic contribution to SUDEP causation. Thus, an overall increased burden of deleterious variants in a highly polygenic background might be important in rendering a given individual more susceptible to SUDEP. Our findings suggest that exome sequencing in people with epilepsy might eventually contribute to generating SUDEP risk estimates, promoting stratified medicine in epilepsy, with the eventual aim of reducing an individual patients risk of SUDEP.


Epilepsia | 2015

Epilepsy and deprivation, a data linkage study

William O. Pickrell; Arron Lacey; Owen Bodger; Joanne C. Demmler; Rhys Huw Thomas; Ronan Lyons; Philip E. M. Smith; Mark I. Rees; Michael Patrick Kerr

To investigate whether the link between epilepsy and deprivation is due to factors associated with deprivation (social causation) or factors associated with a diagnosis of epilepsy (social drift).


Epilepsia | 2014

EPILEPSY PREVALENCE AND SOCIOECONOMIC DEPRIVATION IN ENGLAND

Samuel Steer; William O. Pickrell; Michael Patrick Kerr; Rhys Huw Thomas

Epilepsy is more prevalent in areas of greater socioeconomic deprivation; however, the factors that comprise this deprivation are not understood. We aimed to investigate the association between epilepsy, individual elements of deprivation, and geographic region in order to identify modifiable elements.

Collaboration


Dive into the William O. Pickrell's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge