Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where William R. Harcombe is active.

Publication


Featured researches published by William R. Harcombe.


PLOS Biology | 2007

From Parasite to Mutualist: Rapid Evolution of Wolbachia in Natural Populations of Drosophila

Andrew R. Weeks; Michael Turelli; William R. Harcombe; K. Tracy Reynolds; Ary A. Hoffmann

Wolbachia are maternally inherited bacteria that commonly spread through host populations by causing cytoplasmic incompatibility, often expressed as reduced egg hatch when uninfected females mate with infected males. Infected females are frequently less fecund as a consequence of Wolbachia infection. However, theory predicts that because of maternal transmission, these “parasites” will tend to evolve towards a more mutualistic association with their hosts. Drosophila simulans in California provided the classic case of a Wolbachia infection spreading in nature. Cytoplasmic incompatibility allowed the infection to spread through individual populations within a few years and from southern to northern California (more than 700 km) within a decade, despite reducing the fecundity of infected females by 15%–20% under laboratory conditions. Here we show that the Wolbachia in California D. simulans have changed over the last 20 y so that infected females now exhibit an average 10% fecundity advantage over uninfected females in the laboratory. Our data suggest smaller but qualitatively similar changes in relative fecundity in nature and demonstrate that fecundity-increasing Wolbachia variants are currently polymorphic in natural populations.


Evolution | 2010

Novel cooperation experimentally evolved between species.

William R. Harcombe

Cooperation violates the view of “nature red in tooth and claw” that prevails in our understanding of evolution, yet examples of cooperation abound. Most work has focused on maintenance of cooperation within a single species through mechanisms such as kin selection. The factors necessary for the evolutionary origin of aiding unrelated individuals such as members of another species have not been experimentally tested. Here, I demonstrate that cooperation between species can be evolved in the laboratory if (1) there is preexisting reciprocation or feedback for cooperation, and (2) reciprocation is preferentially received by cooperative genotypes. I used a two species system involving Salmonella enterica ser. Typhimurium and an Escherichia coli mutant unable to synthesize an essential amino acid. In lactose media Salmonella consumes metabolic waste from E. coli, thus creating a mechanism of reciprocation for cooperation. Growth in a spatially structured environment assured that the benefits of cooperation were preferentially received by cooperative genotypes. Salmonella evolved to aid E. coli by excreting a costly amino acid, however this novel cooperation disappeared if the waste consumption or spatial structure were removed. This study builds on previous work to demonstrate an experimental origin of interspecific cooperation, and to test the factors necessary for such interactions to arise.


Nature | 2001

Frequency-dependent Batesian mimicry.

David W. Pfennig; William R. Harcombe; Karin S. Pfennig

Predators avoid look-alikes of venomous snakes only when the real thing is around.


PLOS Computational Biology | 2008

The ascent of the abundant: how mutational networks constrain evolution.

Matthew C. Cowperthwaite; Evan P. Economo; William R. Harcombe; Eric L. Miller; Lauren Ancel Meyers

Evolution by natural selection is fundamentally shaped by the fitness landscapes in which it occurs. Yet fitness landscapes are vast and complex, and thus we know relatively little about the long-range constraints they impose on evolutionary dynamics. Here, we exhaustively survey the structural landscapes of RNA molecules of lengths 12 to 18 nucleotides, and develop a network model to describe the relationship between sequence and structure. We find that phenotype abundance—the number of genotypes producing a particular phenotype—varies in a predictable manner and critically influences evolutionary dynamics. A study of naturally occurring functional RNA molecules using a new structural statistic suggests that these molecules are biased toward abundant phenotypes. This supports an “ascent of the abundant” hypothesis, in which evolution yields abundant phenotypes even when they are not the most fit.


Science | 2014

Epistasis and allele specificity in the emergence of a stable polymorphism in Escherichia coli

Jessica Plucain; Thomas Hindré; Mickaël Le Gac; Olivier Tenaillon; Stéphane Cruveiller; Claudine Médigue; Nicholas Leiby; William R. Harcombe; Christopher J. Marx; Richard E. Lenski; Dominique Schneider

Serial Mutation Mutations that affect gene function and, ultimately, the phenotype of an organism are grist to the mill of evolution. While examining the genetic basis for a stable polymorphism observed in bacteria during a long-term mutation experiment, Plucain et al. (p. 1366, published online 6 March) identified three specific, successive mutational events exhibiting synergistic epistatic and frequency-dependent interactions that enabled one lineage to invade the other and to be maintained. Thus, a series of specific mutations conferred the invasion phenotype and allowed the use of novel resources only when all mutations were present. The emergence of a stable polymorphism in bacteria involved a multistep process including three specific mutations. Ecological opportunities promote population divergence into coexisting lineages. However, the genetic mechanisms that enable new lineages to exploit these opportunities are poorly understood except in cases of single mutations. We examined how two Escherichia coli lineages diverged from their common ancestor at the outset of a long-term coexistence. By sequencing genomes and reconstructing the genetic history of one lineage, we showed that three mutations together were sufficient to produce the frequency-dependent fitness effects that allowed this lineage to invade and stably coexist with the other. These mutations all affected regulatory genes and collectively caused substantial metabolic changes. Moreover, the particular derived alleles were critical for the initial divergence and invasion, indicating that the establishment of this polymorphism depended on specific epistatic interactions.


PLOS ONE | 2009

Population Dynamics Constrain the Cooperative Evolution of Cross-Feeding

James J. Bull; William R. Harcombe

Cross-feeding is the exchange of nutrients among species of microbes. It has two potential evolutionary origins, one as an exchange of metabolic wastes or byproducts among species, the other as a form of cooperation known as reciprocal altruism. This paper explores the conditions favoring the origin of cooperative cross-feeding between two species. There is an extensive literature on the evolution of cooperation, and some of the requirements for the evolution of cooperative cross-feeding follow from this prior work–specifically the requirement that interactions be limited to small groups of individuals, such as colonies in a spatially structured environment. Evolution of cooperative cross-feeding by a species also requires that cross-feeding from the partner species already exists, so that the cooperating mutant will automatically be reciprocated for its actions. Beyond these considerations, some unintuitive dynamical constraints apply. In particular, the benefit of cooperative cross-feeding applies only in the range of intermediate cell densities. At low density, resource concentrations are too low to offset the cost of cooperation. At high density, resources shared by both species become limiting, and the two species become competitors. These considerations suggest that the evolution of cooperative cross-feeding in nature may be more challenging than for other types of cooperation. However, the principles identified here may enable the experimental evolution of cross-feeding, as born out by a recent study.


Applied and Environmental Microbiology | 2005

Impact of Phages on Two-Species Bacterial Communities

William R. Harcombe; James J. Bull

ABSTRACT A long history of experimental work has shown that addition of bacteriophages to a monoculture of bacteria leads to only a temporary depression of bacterial levels. Resistant bacteria usually become abundant, despite reduced growth rates relative to those of phage-sensitive bacteria. This restoration of high bacterial density occurs even if the phages evolve to overcome bacterial resistance. We believe that the generality of this result may be limited to monocultures, in which the resistant bacteria do not face competition from bacterial species unaffected by the phage. As a simple case, we investigated the impact of phages attacking one species in a two-species culture of bacteria. In the absence of phages, Escherichia coli B and Salmonella enterica serovar Typhimurium were stably maintained during daily serial passage in glucose minimal medium (M9). When either of two E. coli-specific phages (T7 or T5) was added to the mixed culture, E. coli became extinct or was maintained at densities that were orders of magnitude lower than those before phage introduction, even though the E. coli densities with phage reached high levels when Salmonella was absent. In contrast, the addition of a phage that attacked only Salmonella (SP6) led to transient decreases in the bacterial number whether E. coli was absent or present. These results suggest that phages can sometimes, although not always, provide long-term suppression of target bacteria.


PLOS Computational Biology | 2013

The Ability of Flux Balance Analysis to Predict Evolution of Central Metabolism Scales with the Initial Distance to the Optimum

William R. Harcombe; Nigel F. Delaney; Nicholas Leiby; Niels Klitgord; Christopher J. Marx

The most powerful genome-scale framework to model metabolism, flux balance analysis (FBA), is an evolutionary optimality model. It hypothesizes selection upon a proposed optimality criterion in order to predict the set of internal fluxes that would maximize fitness. Here we present a direct test of the optimality assumption underlying FBA by comparing the central metabolic fluxes predicted by multiple criteria to changes measurable by a 13C-labeling method for experimentally-evolved strains. We considered datasets for three Escherichia coli evolution experiments that varied in their length, consistency of environment, and initial optimality. For ten populations that were evolved for 50,000 generations in glucose minimal medium, we observed modest changes in relative fluxes that led to small, but significant decreases in optimality and increased the distance to the predicted optimal flux distribution. In contrast, seven populations evolved on the poor substrate lactate for 900 generations collectively became more optimal and had flux distributions that moved toward predictions. For three pairs of central metabolic knockouts evolved on glucose for 600–800 generations, there was a balance between cases where optimality and flux patterns moved toward or away from FBA predictions. Despite this variation in predictability of changes in central metabolism, two generalities emerged. First, improved growth largely derived from evolved increases in the rate of substrate use. Second, FBA predictions bore out well for the two experiments initiated with ancestors with relatively sub-optimal yield, whereas those begun already quite optimal tended to move somewhat away from predictions. These findings suggest that the tradeoff between rate and yield is surprisingly modest. The observed positive correlation between rate and yield when adaptation initiated further from the optimum resulted in the ability of FBA to use stoichiometric constraints to predict the evolution of metabolism despite selection for rate.


Behavioral Ecology and Sociobiology | 2007

Population differences in predation on Batesian mimics in allopatry with their model: selection against mimics is strongest when they are common

David W. Pfennig; George R. Harper; Abel F. Brumo; William R. Harcombe; Karin S. Pfennig

Batesian mimicry evolves when a palatable species, the “mimic,” resembles a dangerous species, the “model,” because both receive protection from predation. Yet, this protection should break down where the model is absent, because predators in such areas would not be under selection to avoid the model. Here, we test this prediction in a coral snake mimicry complex. We exposed plasticine replicas of milk snakes that closely mimic coral snakes to natural predators to determine if good mimetic milk snakes are preferentially attacked in allopatry with their model. Moreover, we evaluated whether attack rates on these replicas varied among three different allopatric regions that differed in the type of mimic found locally (i.e., good mimic, poor mimic, or no mimic). When all three regions were considered together, mimics were not preferentially attacked. When regions were analyzed separately, however, attacks on mimics were significantly greater than randomness only where good mimics were found. These variable levels of predation on good mimics might reflect frequency-dependent (i.e., apostatic) predation. In allopatric regions where good mimics are present, predators might have learned or evolved preferences for conspicuous, palatable prey that they encounter frequently. By contrast, in allopatric regions where good mimics are absent, predators might not have learned or evolved preferences for novel phenotypes. Thus, when predation is frequency-dependent, as long as good mimics are rare, they might not experience elevated levels of predation in allopatry with their model as predicted by the Batesian mimicry hypothesis.


BMC Evolutionary Biology | 2009

Compensatory evolution for a gene deletion is not limited to its immediate functional network

William R. Harcombe; R Springman; James J. Bull

BackgroundGenetic disruption of an important phenotype should favor compensatory mutations that restore the phenotype. If the genetic basis of the phenotype is modular, with a network of interacting genes whose functions are specific to that phenotype, compensatory mutations are expected among the genes of the affected network. This perspective was tested in the bacteriophage T3 using a genome deleted of its DNA ligase gene, disrupting DNA metabolism.ResultsIn two replicate, long-term adaptations, phage compensatory evolution accommodated the low ligase level provided by the host without reinventing its own ligase. In both lines, fitness increased substantially but remained well below that of the intact genome. Each line accumulated over a dozen compensating mutations during long-term adaptation, and as expected, many of the compensatory changes were within the DNA metabolism network. However, several compensatory changes were outside the network and defy any role in DNA metabolism or biochemical connection to the disruption. In one line, these extra-network changes were essential to the recovery. The genes experiencing compensatory changes were moderately conserved between T3 and its relative T7 (25% diverged), but the involvement of extra-network changes was greater in T3.ConclusionCompensatory evolution was only partly limited to the known functionally interacting partners of the deleted gene. Thus gene interactions contributing to fitness were more extensive than suggested by the functional properties currently ascribed to the genes. Compensatory evolution offers an easy method of discovering genome interactions among specific elements that does not rest on an a priori knowledge of those elements or their interactions.

Collaboration


Dive into the William R. Harcombe's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David W. Pfennig

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

James J. Bull

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge