Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher J. Marx is active.

Publication


Featured researches published by Christopher J. Marx.


Science | 2011

Diminishing Returns Epistasis Among Beneficial Mutations Decelerates Adaptation

Hsin-Hung Chou; Hsuan-Chao Chiu; Nigel F. Delaney; Daniel Segrè; Christopher J. Marx

Interactions between genes reduce the benefits of a mutation and decrease the rate of fitness gain during adaptation. Epistasis has substantial impacts on evolution, in particular, the rate of adaptation. We generated combinations of beneficial mutations that arose in a lineage during rapid adaptation of a bacterium whose growth depended on a newly introduced metabolic pathway. The proportional selective benefit for three of the four loci consistently decreased when they were introduced onto more fit backgrounds. These three alleles all reduced morphological defects caused by expression of the foreign pathway. A simple theoretical model segregating the apparent contribution of individual alleles to benefits and costs effectively predicted the interactions between them. These results provide the first evidence that patterns of epistasis may differ for within- and between-gene interactions during adaptation and that diminishing returns epistasis contributes to the consistent observation of decelerating fitness gains during adaptation.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Burkholderia Xenovorans LB400 Harbors a Multi-Replicon, 9.73-Mbp Genome Shaped for Versatility

Patrick Chain; Vincent J. Denef; Konstantinos T. Konstantinidis; Lisa M. Vergez; Loreine Agulló; Valeria Latorre Reyes; Loren Hauser; Macarena Córdova; Luis Gómez; Myriam González; Miriam Land; Victoria Lao; Frank W. Larimer; John J. LiPuma; Eshwar Mahenthiralingam; Stephanie Malfatti; Christopher J. Marx; J. Jacob Parnell; Alban Ramette; Paul G. Richardson; Michael Seeger; Daryl J. Smith; Theodore Spilker; Woo Jun Sul; Tamara V. Tsoi; Luke E. Ulrich; Igor B. Zhulin; James M. Tiedje

Burkholderia xenovorans LB400 (LB400), a well studied, effective polychlorinated biphenyl-degrader, has one of the two largest known bacterial genomes and is the first nonpathogenic Burkholderia isolate sequenced. From an evolutionary perspective, we find significant differences in functional specialization between the three replicons of LB400, as well as a more relaxed selective pressure for genes located on the two smaller vs. the largest replicon. High genomic plasticity, diversity, and specialization within the Burkholderia genus are exemplified by the conservation of only 44% of the genes between LB400 and Burkholderia cepacia complex strain 383. Even among four B. xenovorans strains, genome size varies from 7.4 to 9.73 Mbp. The latter is largely explained by our findings that >20% of the LB400 sequence was recently acquired by means of lateral gene transfer. Although a range of genetic factors associated with in vivo survival and intercellular interactions are present, these genetic factors are likely related to niche breadth rather than determinants of pathogenicity. The presence of at least eleven “central aromatic” and twenty “peripheral aromatic” pathways in LB400, among the highest in any sequenced bacterial genome, supports this hypothesis. Finally, in addition to the experimentally observed redundancy in benzoate degradation and formaldehyde oxidation pathways, the fact that 17.6% of proteins have a better LB400 paralog than an ortholog in a different genome highlights the importance of gene duplication and repeated acquirement, which, coupled with their divergence, raises questions regarding the role of paralogs and potential functional redundancies in large-genome microbes.


PLOS ONE | 2009

Methylobacterium Genome Sequences: A Reference Blueprint to Investigate Microbial Metabolism of C1 Compounds from Natural and Industrial Sources

Stéphane Vuilleumier; Ludmila Chistoserdova; Ming-Chun Lee; Françoise Bringel; Aurélie Lajus; Yang Zhou; Benjamin Gourion; Valérie Barbe; Jean Chang; Stéphane Cruveiller; Carole Dossat; Will Gillett; Christelle Gruffaz; Eric Haugen; Edith Hourcade; Ruth Levy; Sophie Mangenot; Emilie Muller; Thierry Nadalig; Marco Pagni; Christian Penny; Rémi Peyraud; David G. Robinson; David Roche; Zoé Rouy; Channakhone Saenampechek; Grégory Salvignol; David Vallenet; Zaining Wu; Christopher J. Marx

Background Methylotrophy describes the ability of organisms to grow on reduced organic compounds without carbon-carbon bonds. The genomes of two pink-pigmented facultative methylotrophic bacteria of the Alpha-proteobacterial genus Methylobacterium, the reference species Methylobacterium extorquens strain AM1 and the dichloromethane-degrading strain DM4, were compared. Methodology/Principal Findings The 6.88 Mb genome of strain AM1 comprises a 5.51 Mb chromosome, a 1.26 Mb megaplasmid and three plasmids, while the 6.12 Mb genome of strain DM4 features a 5.94 Mb chromosome and two plasmids. The chromosomes are highly syntenic and share a large majority of genes, while plasmids are mostly strain-specific, with the exception of a 130 kb region of the strain AM1 megaplasmid which is syntenic to a chromosomal region of strain DM4. Both genomes contain large sets of insertion elements, many of them strain-specific, suggesting an important potential for genomic plasticity. Most of the genomic determinants associated with methylotrophy are nearly identical, with two exceptions that illustrate the metabolic and genomic versatility of Methylobacterium. A 126 kb dichloromethane utilization (dcm) gene cluster is essential for the ability of strain DM4 to use DCM as the sole carbon and energy source for growth and is unique to strain DM4. The methylamine utilization (mau) gene cluster is only found in strain AM1, indicating that strain DM4 employs an alternative system for growth with methylamine. The dcm and mau clusters represent two of the chromosomal genomic islands (AM1: 28; DM4: 17) that were defined. The mau cluster is flanked by mobile elements, but the dcm cluster disrupts a gene annotated as chelatase and for which we propose the name “island integration determinant” (iid). Conclusion/Significance These two genome sequences provide a platform for intra- and interspecies genomic comparisons in the genus Methylobacterium, and for investigations of the adaptive mechanisms which allow bacterial lineages to acquire methylotrophic lifestyles.


Journal of Bacteriology | 2000

Novel formaldehyde-activating enzyme in Methylobacterium extorquens AM1 required for growth on methanol.

Julia A. Vorholt; Christopher J. Marx; Mary E. Lidstrom; Rudolf K. Thauer

Formaldehyde is toxic for all organisms from bacteria to humans due to its reactivity with biological macromolecules. Organisms that grow aerobically on single-carbon compounds such as methanol and methane face a special challenge in this regard because formaldehyde is a central metabolic intermediate during methylotrophic growth. In the alpha-proteobacterium Methylobacterium extorquens AM1, we found a previously unknown enzyme that efficiently catalyzes the removal of formaldehyde: it catalyzes the condensation of formaldehyde and tetrahydromethanopterin to methylene tetrahydromethanopterin, a reaction which also proceeds spontaneously, but at a lower rate than that of the enzyme-catalyzed reaction. Formaldehyde-activating enzyme (Fae) was purified from M. extorquens AM1 and found to be one of the major proteins in the cytoplasm. The encoding gene is located within a cluster of genes for enzymes involved in the further oxidation of methylene tetrahydromethanopterin to CO(2). Mutants of M. extorquens AM1 defective in Fae were able to grow on succinate but not on methanol and were much more sensitive toward methanol and formaldehyde. Uncharacterized orthologs to this enzyme are predicted to be encoded by uncharacterized genes from archaea, indicating that this type of enzyme occurs outside the methylotrophic bacteria.


PLOS Genetics | 2012

Repeated, Selection-Driven Genome Reduction of Accessory Genes in Experimental Populations

Ming-Chun Lee; Christopher J. Marx

Genome reduction has been observed in many bacterial lineages that have adapted to specialized environments. The extreme genome degradation seen for obligate pathogens and symbionts appears to be dominated by genetic drift. In contrast, for free-living organisms with reduced genomes, the dominant force is proposed to be direct selection for smaller, streamlined genomes. Most variation in gene content for these free-living species is of “accessory” genes, which are commonly gained as large chromosomal islands that are adaptive for specialized traits such as pathogenicity. It is generally unclear, however, whether the process of accessory gene loss is largely driven by drift or selection. Here we demonstrate that selection for gene loss, and not a shortened genome, per se, drove massive, rapid reduction of accessory genes. In just 1,500 generations of experimental evolution, 80% of populations of Methylobacterium extorquens AM1 experienced nearly parallel deletions removing up to 10% of the genome from a megaplasmid present in this strain. The absence of these deletion events in a mutation accumulation experiment suggested that selection, rather than drift, has dominated the process. Reconstructing these deletions confirmed that they were beneficial in their selective regimes, but led to decreased performance in alternative environments. These results indicate that selection can be crucial in eliminating unnecessary genes during the early stages of adaptation to a specialized environment.


PLOS Genetics | 2009

Fast growth increases the selective advantage of a mutation arising recurrently during evolution under metal limitation.

Hsin-Hung Chou; Julia Berthet; Christopher J. Marx

Understanding the evolution of biological systems requires untangling the molecular mechanisms that connect genetic and environmental variations to their physiological consequences. Metal limitation across many environments, ranging from pathogens in the human body to phytoplankton in the oceans, imposes strong selection for improved metal acquisition systems. In this study, we uncovered the genetic and physiological basis of adaptation to metal limitation using experimental populations of Methylobacterium extorquens AM1 evolved in metal-deficient growth media. We identified a transposition mutation arising recurrently in 30 of 32 independent populations that utilized methanol as a carbon source, but not in any of the 8 that utilized only succinate. These parallel insertion events increased expression of a novel transporter system that enhanced cobalt uptake. Such ability ensured the production of vitamin B12, a cobalt-containing cofactor, to sustain two vitamin B12–dependent enzymatic reactions essential to methanol, but not succinate, metabolism. Interestingly, this mutation provided higher selective advantages under genetic backgrounds or incubation temperatures that permit faster growth, indicating growth-rate–dependent epistatic and genotype-by-environment interactions. Our results link beneficial mutations emerging in a metal-limiting environment to their physiological basis in carbon metabolism, suggest that certain molecular features may promote the emergence of parallel mutations, and indicate that the selective advantages of some mutations depend generically upon changes in growth rate that can stem from either genetic or environmental influences.


PLOS Genetics | 2012

Ultrafast Evolution and Loss of CRISPRs Following a Host Shift in a Novel Wildlife Pathogen, Mycoplasma gallisepticum

Nigel F. Delaney; Susan L. Balenger; Camille Bonneaud; Christopher J. Marx; Geoffrey E. Hill; Naola Ferguson-Noel; Peter Tsai; Allen G. Rodrigo; Scott V. Edwards

Measureable rates of genome evolution are well documented in human pathogens but are less well understood in bacterial pathogens in the wild, particularly during and after host switches. Mycoplasma gallisepticum (MG) is a pathogenic bacterium that has evolved predominantly in poultry and recently jumped to wild house finches (Carpodacus mexicanus), a common North American songbird. For the first time we characterize the genome and measure rates of genome evolution in House Finch isolates of MG, as well as in poultry outgroups. Using whole-genome sequences of 12 House Finch isolates across a 13-year serial sample and an additional four newly sequenced poultry strains, we estimate a nucleotide diversity in House Finch isolates of only ∼2% of ancestral poultry strains and a nucleotide substitution rate of 0.8−1.2×10−5 per site per year both in poultry and in House Finches, an exceptionally fast rate rivaling some of the highest estimates reported thus far for bacteria. We also found high diversity and complete turnover of CRISPR arrays in poultry MG strains prior to the switch to the House Finch host, but after the invasion of House Finches there is progressive loss of CRISPR repeat diversity, and recruitment of novel CRISPR repeats ceases. Recent (2007) House Finch MG strains retain only ∼50% of the CRISPR repertoire founding (1994–95) strains and have lost the CRISPR–associated genes required for CRISPR function. Our results suggest that genome evolution in bacterial pathogens of wild birds can be extremely rapid and in this case is accompanied by apparent functional loss of CRISPRs.


Evolution | 2009

Asymmetric, Bimodal Trade-Offs During Adaptation of Methylobacterium to Distinct Growth Substrates

Ming-Chun Lee; Hsin-Hung Chou; Christopher J. Marx

Trade-offs between selected and nonselected environments are often assumed to exist during adaptation. This phenomenon is prevalent in microbial metabolism, where many organisms have come to specialize on a narrow breadth of substrates. One wellstudied example is methylotrophic bacteria that can use single-carbon (C1) compounds as their sole source of carbon and energy, but generally use few, if any, multi-C compounds. Here, we use adaptation of experimental populations of the model methylotroph, Methylobacterium extorquens AM1, to C1 (methanol) or multi-C (succinate) compounds to investigate specialization and trade-offs between these two metabolic lifestyles. We found a general trend toward trade-offs during adaptation to succinate, but this was neither universal nor showed a quantitative relationship with the extent of adaptation. After 1500 generations, succinate-evolved strains had a remarkably bimodal distribution of fitness values on methanol: either an improvement comparable to the strains adapted on methanol or the complete loss of the ability to grow on C1 compounds. In contrast, adaptation to methanol resulted in no such trade-offs. Based on the substantial, asymmetric loss of C1 growth during growth on succinate, we suggest that the long-term maintenance of C1 metabolism across the genus Methylobacterium requires relatively frequent use of C1 compounds to prevent rapid loss.


Journal of Bacteriology | 2003

Formaldehyde-Detoxifying Role of the Tetrahydromethanopterin-Linked Pathway in Methylobacterium extorquens AM1

Christopher J. Marx; Ludmila Chistoserdova; Mary E. Lidstrom

The facultative methylotroph Methylobacterium extorquens AM1 possesses two pterin-dependent pathways for C(1) transfer between formaldehyde and formate, the tetrahydrofolate (H(4)F)-linked pathway and the tetrahydromethanopterin (H(4)MPT)-linked pathway. Both pathways are required for growth on C(1) substrates; however, mutants defective for the H(4)MPT pathway reveal a unique phenotype of being inhibited by methanol during growth on multicarbon compounds such as succinate. It has been previously proposed that this methanol-sensitive phenotype is due to the inability to effectively detoxify formaldehyde produced from methanol. Here we present a comparative physiological characterization of four mutants defective in the H(4)MPT pathway and place them into three different phenotypic classes that are concordant with the biochemical roles of the respective enzymes. We demonstrate that the analogous H(4)F pathway present in M. extorquens AM1 cannot fulfill the formaldehyde detoxification function, while a heterologously expressed pathway linked to glutathione and NAD(+) can successfully substitute for the H(4)MPT pathway. Additionally, null mutants were generated in genes previously thought to be essential, indicating that the H(4)MPT pathway is not absolutely required during growth on multicarbon compounds. These results define the role of the H(4)MPT pathway as the primary formaldehyde oxidation and detoxification pathway in M. extorquens AM1.


Science | 2014

Epistasis and allele specificity in the emergence of a stable polymorphism in Escherichia coli

Jessica Plucain; Thomas Hindré; Mickaël Le Gac; Olivier Tenaillon; Stéphane Cruveiller; Claudine Médigue; Nicholas Leiby; William R. Harcombe; Christopher J. Marx; Richard E. Lenski; Dominique Schneider

Serial Mutation Mutations that affect gene function and, ultimately, the phenotype of an organism are grist to the mill of evolution. While examining the genetic basis for a stable polymorphism observed in bacteria during a long-term mutation experiment, Plucain et al. (p. 1366, published online 6 March) identified three specific, successive mutational events exhibiting synergistic epistatic and frequency-dependent interactions that enabled one lineage to invade the other and to be maintained. Thus, a series of specific mutations conferred the invasion phenotype and allowed the use of novel resources only when all mutations were present. The emergence of a stable polymorphism in bacteria involved a multistep process including three specific mutations. Ecological opportunities promote population divergence into coexisting lineages. However, the genetic mechanisms that enable new lineages to exploit these opportunities are poorly understood except in cases of single mutations. We examined how two Escherichia coli lineages diverged from their common ancestor at the outset of a long-term coexistence. By sequencing genomes and reconstructing the genetic history of one lineage, we showed that three mutations together were sufficient to produce the frequency-dependent fitness effects that allowed this lineage to invade and stably coexist with the other. These mutations all affected regulatory genes and collectively caused substantial metabolic changes. Moreover, the particular derived alleles were critical for the initial divergence and invasion, indicating that the establishment of this polymorphism depended on specific epistatic interactions.

Collaboration


Dive into the Christopher J. Marx's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge