William S. Chen
University of Illinois at Chicago
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by William S. Chen.
Nature Medicine | 2005
Juhua Chen; Payaningal R. Somanath; Olga V. Razorenova; William S. Chen; Nissim Hay; Paul Bornstein; Tatiana V. Byzova
Akt kinases control essential cellular functions, including proliferation, apoptosis, metabolism and transcription, and have been proposed as promising targets for treatment of angiogenesis-dependent pathologies, such as cancer and ischemic injury. But their precise roles in neovascularization remain elusive. Here we show that Akt1 is the predominant isoform in vascular cells and describe the unexpected consequences of Akt1 knockout on vascular integrity and pathological angiogenesis. Angiogenic responses in three distinct in vivo models were enhanced in Akt1−/− mice; these enhanced responses were associated with impairment of blood vessel maturation and increased vascular permeability. Although impaired vascular maturation in Akt1−/− mice may be attributed to reduced activation of endothelial nitric oxide synthase (eNOS), the major phenotypic changes in vascular permeability and angiogenesis were linked to reduced expression of two endogenous vascular regulators, thrombospondins 1 (TSP-1) and 2 (TSP-2). Re-expression of TSP-1 and TSP-2 in mice transplanted with wild-type bone marrow corrected the angiogenic abnormalities in Akt1−/− mice. These findings establish a crucial role of an Akt-thrombospondin axis in angiogenesis.
PLOS ONE | 2007
Naohiro Kawamura; Fumitaka Kugimiya; Yasushi Oshima; Shinsuke Ohba; Toshiyuki Ikeda; Taku Saito; Yusuke Shinoda; Yosuke Kawasaki; Naoshi Ogata; Kazuto Hoshi; Toru Akiyama; William S. Chen; Nissim Hay; Kazuyuki Tobe; Takashi Kadowaki; Yoshiaki Azuma; Kozo Nakamura; Ung-il Chung; Hiroshi Kawaguchi
Bone mass and turnover are maintained by the coordinated balance between bone formation by osteoblasts and bone resorption by osteoclasts, under regulation of many systemic and local factors. Phosphoinositide-dependent serine-threonine protein kinase Akt is one of the key players in the signaling of potent bone anabolic factors. This study initially showed that the disruption of Akt1, a major Akt in osteoblasts and osteoclasts, in mice led to low-turnover osteopenia through dysfunctions of both cells. Ex vivo cell culture analyses revealed that the osteoblast dysfunction was traced to the increased susceptibility to the mitochondria-dependent apoptosis and the decreased transcriptional activity of runt-related transcription factor 2 (Runx2), a master regulator of osteoblast differentiation. Notably, our findings revealed a novel role of Akt1/forkhead box class O (FoxO) 3a/Bim axis in the apoptosis of osteoblasts: Akt1 phosphorylates the transcription factor FoxO3a to prevent its nuclear localization, leading to impaired transactivation of its target gene Bim which was also shown to be a potent proapoptotic molecule in osteoblasts. The osteoclast dysfunction was attributed to the cell autonomous defects of differentiation and survival in osteoclasts and the decreased expression of receptor activator of nuclear factor-κB ligand (RANKL), a major determinant of osteoclastogenesis, in osteoblasts. Akt1 was established as a crucial regulator of osteoblasts and osteoclasts by promoting their differentiation and survival to maintain bone mass and turnover. The molecular network found in this study will provide a basis for rational therapeutic targets for bone disorders.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Xiaoming Ju; Sanjay Katiyar; Chenguang Wang; Manran Liu; Xuanmao Jiao; Shengwen Li; Jie Zhou; Jacob Turner; Michael P. Lisanti; Robert G. Russell; Susette C. Mueller; John Ojeifo; William S. Chen; Nissim Hay; Richard G. Pestell
The serine threonine kinase Akt1 has been implicated in the control of cellular metabolism, survival and growth. Here, disruption of the ubiquitously expressed member of the Akt family of genes, Akt1, in the mouse demonstrates a requirement for Akt1 in ErbB2-induced mammary tumorigenesis. Akt1 deficiency delayed tumor growth and reduced lung metastases, correlating with a reduction in phosphorylation of the Akt1 target, tuberous sclerosis 2 (TSC2) at Ser-939. Akt1-deficient mammary epithelial tumor cells (MEC) were reduced in size and proliferative capacity, with reduced cyclin D1 and p27KIP1 abundance. Akt1 deficiency abrogated the oncogene-induced changes in polarization of MEC in three-dimensional culture and reverted oncogene-induced relocalization of the phosphorylated ezrin–radixin–moesin proteins. Akt1 increased MEC migration across an endothelial cell barrier, enhancing the persistence of migratory directionality. An unbiased proteomic analysis demonstrated Akt1 mediated MEC migration through paracrine signaling via induction of expression and secretion of CXCL16 and MIP1γ. Akt1 governs MEC polarity, migratory directionality and breast cancer onset induced by ErbB2 in vivo.
Molecular and Cellular Biology | 2009
William S. Chen; Xiao Ding Peng; Yong Wang; Pei Zhang Xu; Mei Ling Chen; Yongmei Luo; Sang Min Jeon; Kevin Coleman; Wanda M. Haschek; Joseph Bass; Louis H. Philipson; Nissim Hay
ABSTRACT Phenotypic analyses of mice null for the individual Akt isoforms suggested that they are functionally distinct and that only Akt2 plays a role in diabetes. We show here that Akt isoforms play compensatory and complementary roles in glucose homeostasis and diabetes. Insulin resistance in Akt2−/− mice was inhibited by haplodeficiency of Pten, suggesting that other Akt isoforms can compensate for Akt2 function. Haplodeficiency of Akt1 in Akt2−/− mice, however, converts prediabetes to overt type 2 diabetes, which is also reversed by haplodeficiency of Pten. Akt3 does not appear to contribute significantly to diabetes. Overt type 2 diabetes in Akt1+/− Akt2−/− mice is manifested by hyperglycemia due to beta-cell dysfunction combined with impaired glucose homeostasis due to markedly decreased leptin levels. Restoring leptin levels was sufficient to restore normal blood glucose and insulin levels in Akt1+/− Akt2−/− and Akt2−/− mice, suggesting that leptin-deficiency is the predominant cause of diabetes in these mice. These results uncover a new mechanism linking Akt to diabetes, provide a therapeutic strategy, and show that diabetes induced as a consequence of cancer therapy, via Akt inhibition, could be reversed by leptin therapy.
Developmental Dynamics | 1998
Katia Manova; Carol Tomihara-Newberger; Shasha Wang; Alla Godelman; Sundeep Kalantry; Karen Witty-Blease; Victor De Leon; William S. Chen; Elizabeth Lacy; Rosemary F. Bachvarova
The pattern of apoptotic cell death has been surveyed in prestreak and primitive streak embryos of four strains of mice and in three mutants affecting gastrulation. In C57BL/ 6 embryos, a high level of cell death occurs in the early egg cylinder stage at embryonic day 5 (E5) to E5.5. In all strains, cell death is elevated shortly before gastrulation, but the level varies four‐ to fivefold among strains. During gastrulation, cell death declines but is relatively more abundant in the distal and distal anterior regions. Early streak embryos cultured in media with reduced levels of growth factors show increased cell death mainly in the distal region. In three mutants with disturbed function of the proximal visceral endoderm and/ or primitive streak, cell death is increased, and the regional pattern seen in normal embryos is intensified. The results strongly suggest that the proximal visceral endoderm and primitive streak region are the principal sites of synthesis of growth factors promoting cell survival. We conclude that localized growth factor supply has an important role in regulating the size of the embryo and of embryonic regions. Dev. Dyn. 1998;213:293–308.
Molecular and Cellular Biology | 2002
Katharine C. Abruzzi; Adelle Smith; William S. Chen; Frank Solomon
ABSTRACT Free β-tubulin not in heterodimers with α-tubulin can be toxic, disrupting microtubule assembly and function. We are interested in the mechanisms by which cells protect themselves from free β-tubulin. This study focused specifically on the function of Rbl2p, which, like α-tubulin, can rescue cells from free β-tubulin. In vitro studies of the mammalian homolog of Rbl2p, cofactor A, have suggested that Rbl2p/cofactor A may be involved in tubulin folding. Here we show that Rbl2p becomes essential in cells containing a modest excess of β-tubulin relative to α-tubulin. However, this essential activity of Rbl2p/cofactorA does not depend upon the reactions described by the in vitro assay. Rescue of β-tubulin toxicity requires a minimal but substoichiometric ratio of Rbl2p to β-tubulin. The data suggest that Rbl2p binds transiently to free β-tubulin, which then passes into an aggregated form that is not toxic.
Molecular and Cellular Biology | 2002
Katharine C. Abruzzi; Adelle Smith; William S. Chen; Frank Solomon
ABSTRACT Free β-tubulin not in heterodimers with α-tubulin can be toxic, disrupting microtubule assembly and function. We are interested in the mechanisms by which cells protect themselves from free β-tubulin. This study focused specifically on the function of Rbl2p, which, like α-tubulin, can rescue cells from free β-tubulin. In vitro studies of the mammalian homolog of Rbl2p, cofactor A, have suggested that Rbl2p/cofactor A may be involved in tubulin folding. Here we show that Rbl2p becomes essential in cells containing a modest excess of β-tubulin relative to α-tubulin. However, this essential activity of Rbl2p/cofactorA does not depend upon the reactions described by the in vitro assay. Rescue of β-tubulin toxicity requires a minimal but substoichiometric ratio of Rbl2p to β-tubulin. The data suggest that Rbl2p binds transiently to free β-tubulin, which then passes into an aggregated form that is not toxic.
Molecular and Cellular Biology | 2002
Katharine C. Abruzzi; Adelle Smith; William S. Chen; Frank Solomon
ABSTRACT Free β-tubulin not in heterodimers with α-tubulin can be toxic, disrupting microtubule assembly and function. We are interested in the mechanisms by which cells protect themselves from free β-tubulin. This study focused specifically on the function of Rbl2p, which, like α-tubulin, can rescue cells from free β-tubulin. In vitro studies of the mammalian homolog of Rbl2p, cofactor A, have suggested that Rbl2p/cofactor A may be involved in tubulin folding. Here we show that Rbl2p becomes essential in cells containing a modest excess of β-tubulin relative to α-tubulin. However, this essential activity of Rbl2p/cofactorA does not depend upon the reactions described by the in vitro assay. Rescue of β-tubulin toxicity requires a minimal but substoichiometric ratio of Rbl2p to β-tubulin. The data suggest that Rbl2p binds transiently to free β-tubulin, which then passes into an aggregated form that is not toxic.
Genes & Development | 2001
William S. Chen; Pei Zhang Xu; Kathrin Gottlob; Mei Ling Chen; Karen Sokol; Tanya Shiyanova; Igor B. Roninson; Wei Weng; Ryo Suzuki; Kazuyuki Tobe; Takashi Kadowaki; Nissim Hay
Genes & Development | 2003
Xiao Ding Peng; Pei Zhang Xu; Mei Ling Chen; Annett Hahn-Windgassen; Jennifer Skeen; Joel Jacobs; Deepa Sundararajan; William S. Chen; Susan E. Crawford; Kevin Coleman; Nissim Hay