Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where William T. Tran is active.

Publication


Featured researches published by William T. Tran.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Tumor radiation response enhancement by acoustical stimulation of the vasculature

Gregory J. Czarnota; Raffi Karshafian; Peter N. Burns; Shun Wong; Azza Al Mahrouki; Justin Lee; A.L. Caissie; William T. Tran; Christina Kim; Melissa Furukawa; Emily Wong; Anoja Giles

We have discovered that ultrasound-mediated microbubble vascular disruption can enhance tumor responses to radiation in vivo. We demonstrate this effect using a human PC3 prostate cancer xenograft model. Results indicate a synergistic effect in vivo with combined single treatments of ultrasound-stimulated microbubble vascular perturbation and radiation inducing an over 10-fold greater cell kill with combined treatments. We further demonstrate with experiments in vivo that induction of ceramide-related endothelial cell apoptosis, leading to vascular disruption, is a causative mechanism. In vivo experiments with ultrasound and bubbles permit radiation doses to be decreased significantly for comparable effect. We envisage this unique combined ultrasound-based vascular perturbation and radiation treatment method being used to enhance the effects of radiation in a tumor, leading to greater tumor eradication.


Medical Image Analysis | 2015

Non-invasive evaluation of breast cancer response to chemotherapy using quantitative ultrasonic backscatter parameters

Lakshmanan Sannachi; Hadi Tadayyon; Ali Sadeghi-Naini; William T. Tran; Sonal Gandhi; Frances C. Wright; Michael L. Oelze; Gregory J. Czarnota

Tumor response to neoadjuvant chemotherapy in patients (n=30) with locally advanced breast cancer (LABC) was examined using quantitative ultrasound. Three ultrasound backscatter parameters, the integrated backscatter coefficient (IBC), average scatterer diameter (ASD), and average acoustic concentration (AAC), were estimated from tumors prior to treatment and at four times during neoadjuvant chemotherapy treatment (weeks 0, 1, 4, 8, and prior to surgery) and compared to ultimate clinical and pathological tumor responses. Results demonstrated that among all parameters, AAC was the best indicator of tumor response early after starting treatment. The AAC parameter increased substantially in treatment-responding patients as early as one week after treatment initiation, further increased at week 4, and attained a maximum at week 8. In contrast, the backscatter parameters from non-responders did not show any changes after treatment initiation. The two patient populations exhibited a statistically significant difference in changes of AAC (p<0.001) and ASD (p=0.023) over all treatment times examined. The best prediction of treatment response was achieved with the combination of AAC and ASD at week 4 (82% sensitivity, 100% specificity, and 86% accuracy) of 12-18 weeks of treatment. The survival of patients with responsive ultrasound parameters was higher than patients with non-responsive ultrasound parameters (35 ± 11 versus 27 ± 11 months, respectively, p=0.043). This study demonstrates that ultrasound parameters derived from the ultrasound backscattered power spectrum can potentially serve as non-invasive early measures of clinical tumor response to chemotherapy treatments.


British Journal of Cancer | 2012

Microbubble and ultrasound radioenhancement of bladder cancer

William T. Tran; S Iradji; E Sofroni; Anoja Giles; D Eddy; Gregory J. Czarnota

Background:Tumour vasculature is an important component of tumour growth and survival. Recent evidence indicates tumour vasculature also has an important role in tumour radiation response. In this study, we investigated ultrasound and microbubbles to enhance the effects of radiation.Methods:Human bladder cancer HT-1376 xenografts in severe combined immuno-deficient mice were used. Treatments consisted of no, low and high concentrations of microbubbles and radiation doses of 0, 2 and 8 Gy in short-term and longitudinal studies. Acute response was assessed 24 h after treatment and longitudinal studies monitored tumour response weekly up to 28 days using power Doppler ultrasound imaging for a total of 9 conditions (n=90 animals).Results:Quantitative analysis of ultrasound data revealed reduced blood flow with ultrasound-microbubble treatments alone and further when combined with radiation. Tumours treated with microbubbles and radiation revealed enhanced cell death, vascular normalisation and areas of fibrosis. Longitudinal data demonstrated a reduced normalised vascular index and increased tumour cell death in both low and high microbubble concentrations with radiation.Conclusion:Our study demonstrated that ultrasound-mediated microbubble exposure can enhance radiation effects in tumours, and can lead to enhanced tumour cell death.


Technology in Cancer Research & Treatment | 2012

Vascular Strategies for Enhancing Tumour Response to Radiation Therapy

Ahmed El Kaffas; William T. Tran; Gregory J. Czarnota

Radiation therapy is prescribed to more than 50% of patients diagnosed with cancer. Although mechanisms of interaction between radiation and tumour cells are well understood on a molecular level, much remains uncertain concerning the interaction of radiation with the tumour as a whole. Recent studies have demonstrated that single large doses of radiation (8–20 Gy) may primarily target tumour endothelial cells, leading to secondary tumour clonogenic cell death. These studies suggest that blood vessels play an important role in radiation response. As a result, various strategies have been proposed to effectively combine radiation with vascular targeting agents. While most proposed schemes focus on methods to disrupt tumour blood vessels, recent evidence supporting that some anti-angiogenic agents may “normalize” tumour blood vessels, in turn enhancing tumour oxygenation and radiosensitivity, indicates that there may be more efficient strategies. Furthermore, vascular targeting agents have recently been demonstrated to enhance radiation therapy by targeting endothelial cells. When combined with radiation, these agents are believed to cause even more localized vascular destruction followed by tumour clonogenic cell death. Taken together, it is now crucial to elucidate the role of tumour blood vessels in radiation therapy response, in order to make use of this knowledge in developing therapeutic strategies that target tumour vasculature above and beyond classic clonogenic tumour cell death. In this report, we review some major developments in understanding the importance of tumour blood vessels during radiation therapy. A discussion of current imaging modalities used for studying vascular response to treatments will also be presented.


Microvascular Research | 2014

Sunitinib effects on the radiation response of endothelial and breast tumor cells

Ahmed El Kaffas; Azza Al-Mahrouki; William T. Tran; Anoja Giles; Gregory J. Czarnota

BACKGROUND Endothelial cells are suggested regulators of tumor response to radiation. Anti-vascular targeting agents can enhance tumor response by targeting endothelial cells. Here, we have conducted experiments in vitro to discern the effects of radiation combined with the anti-angiogenic Sunitinib on endothelial (HUVEC) and tumor (MDA-MB-231) cells, and further compared findings to results obtained in vivo. METHODS In vitro and in vivo treatments consisted of single dose radiation therapy of 2, 4, 8 or 16 Gy administered alone or in combination with bFGF or Sunitinib. In vitro, in situ end labeling (ISEL) was used to assess 24-hour apoptotic cell death, and clonogenic assays were used to assess long-term response. In vivo MDA-MB-231 tumors were grown in CB-17 SCID mice. The vascular marker CD31 was used to assess 24-hour acute response while tumor clonogenic assays were used to assess long-term tumor cell viability following treatments. RESULTS Using in vitro studies, we observed an enhanced endothelial cell response to radiation doses of 8 and 16 Gy when compared to tumor cells. Administering Sunitinib alone significantly increased HUVEC cell death, while having modest additive effects when combined with radiation. Sunitinib also increased tumor cell death when combined with 8 and 16 Gy radiation doses. In comparison, we found that the clonogenic response of in vivo treated tumor cells more closely resembled that of in vitro treated endothelial cells than in vitro treated tumor cells. CONCLUSION Our results indicate that the endothelium is an important regulator of tumor response to radiotherapy, and that Sunitinib can enhance tumor radiosensitivity. To the best of our knowledge, this is the first time that Sunitinib is investigated in combination with radiotherapy on the MDA-MB-231 breast cancer cell line.


IEEE Transactions on Medical Imaging | 2016

Computer Aided Theragnosis Using Quantitative Ultrasound Spectroscopy and Maximum Mean Discrepancy in Locally Advanced Breast Cancer

Mehrdad J. Gangeh; Hadi Tadayyon; Lakshmanan Sannachi; Ali Sadeghi-Naini; William T. Tran; Gregory J. Czarnota

A noninvasive computer-aided-theragnosis (CAT) system was developed for the early therapeutic cancer response assessment in patients with locally advanced breast cancer (LABC) treated with neoadjuvant chemotherapy. The proposed CAT system was based on multi-parametric quantitative ultrasound (QUS) spectroscopic methods in conjunction with advanced machine learning techniques. Specifically, a kernel-based metric named maximum mean discrepancy (MMD), a technique for learning from imbalanced data based on random undersampling, and supervised learning were investigated with response-monitoring data from LABC patients. The CAT system was tested on 56 patients using statistical significance tests and leave-one-subject-out classification techniques. Textural features using state-of-the-art local binary patterns (LBP), and gray-scale intensity features were extracted from the spectral parametric maps in the proposed CAT system. The system indicated significant differences in changes between the responding and non-responding patient populations as well as high accuracy, sensitivity, and specificity in discriminating between the two patient groups early after the start of treatment, i.e., on weeks 1 and 4 of several months of treatment. The proposed CAT system achieved an accuracy of 85%, 87%, and 90% on weeks 1, 4 and 8, respectively. The sensitivity and specificity of developed CAT system for the same times was 85%, 95%, 90% and 85%, 85%, 91%, respectively. The proposed CAT system thus establishes a noninvasive framework for monitoring cancer treatment response in tumors using clinical ultrasound imaging in conjunction with machine learning techniques. Such a framework can potentially facilitate the detection of refractory responses in patients to treatment early on during a course of therapy to enable possibly switching to more efficacious treatments.


Oncotarget | 2016

Quantitative ultrasound assessment of breast tumor response to chemotherapy using a multi-parameter approach

Hadi Tadayyon; Lakshmanan Sannachi; Mehrdad J. Gangeh; Ali Sadeghi-Naini; William T. Tran; Maureen E. Trudeau; Kathleen I. Pritchard; Sonal Ghandi; Sunil Verma; Gregory J. Czarnota

Purpose This study demonstrated the ability of quantitative ultrasound (QUS) parameters in providing an early prediction of tumor response to neoadjuvant chemotherapy (NAC) in patients with locally advanced breast cancer (LABC). Methods Using a 6-MHz array transducer, ultrasound radiofrequency (RF) data were collected from 58 LABC patients prior to NAC treatment and at weeks 1, 4, and 8 of their treatment, and prior to surgery. QUS parameters including midband fit (MBF), spectral slope (SS), spectral intercept (SI), spacing among scatterers (SAS), attenuation coefficient estimate (ACE), average scatterer diameter (ASD), and average acoustic concentration (AAC) were determined from the tumor region of interest. Ultrasound data were compared with the ultimate clinical and pathological response of the patients tumor to treatment and patient recurrence-free survival. Results Multi-parameter discriminant analysis using the κ-nearest-neighbor classifier demonstrated that the best response classification could be achieved using the combination of MBF, SS, and SAS, with an accuracy of 60 ± 10% at week 1, 77 ± 8% at week 4 and 75 ± 6% at week 8. Furthermore, when the QUS measurements at each time (week) were combined with pre-treatment (week 0) QUS values, the classification accuracies improved (70 ± 9% at week 1, 80 ± 5% at week 4, and 81 ± 6% at week 8). Finally, the multi-parameter QUS model demonstrated a significant difference in survival rates of responding and non-responding patients at weeks 1 and 4 (p=0.035, and 0.027, respectively). Conclusion This study demonstrated for the first time, using new parameters tested on relatively large patient cohort and leave-one-out classifier evaluation, that a hybrid QUS biomarker including MBF, SS, and SAS could, with relatively high sensitivity and specificity, detect the response of LABC tumors to NAC as early as after 4 weeks of therapy. The findings of this study also suggested that incorporating pre-treatment QUS parameters of a tumor improved the classification results. This work demonstrated the potential of QUS and machine learning methods for the early assessment of breast tumor response to NAC and providing personalized medicine with regards to the treatment planning of refractory patients.


Oncoscience | 2016

Breast tumor response to ultrasound mediated excitation of microbubbles and radiation therapy in vivo

Priscilla Lai; Christine Tarapacki; William T. Tran; Ahmed El Kaffas; Justin Lee; Clinton Hupple; Sarah Iradji; Anoja Giles; Azza Al-Mahrouki; Gregory J. Czarnota

Acoustically stimulated microbubbles have been demonstrated to perturb endothelial cells of the vasculature resulting in biological effects. In the present study, vascular and tumor response to ultrasound-stimulated microbubble and radiation treatment was investigated in vivo to identify effects on the blood vessel endothelium. Mice bearing breast cancer tumors (MDA-MB-231) were exposed to ultrasound after intravenous injection of microbubbles at different concentrations, and radiation at different doses (0, 2, and 8 Gy). Mice were sacrificed 12 and 24 hours after treatment for histopathological analysis. Tumor growth delay was assessed for up to 28 days after treatment. The results demonstrated additive antitumor and antivascular effects when ultrasound stimulated microbubbles were combined with radiation. Results indicated tumor cell apoptosis, vascular leakage, a decrease in tumor vasculature, a delay in tumor growth and an overall tumor disruption. When coupled with radiation, ultrasound-stimulated microbubbles elicited synergistic anti-tumor and antivascular effects by acting as a radioenhancing agent in breast tumor blood vessels. The present study demonstrates ultrasound driven microbubbles as a novel form of targeted antiangiogenic therapy in a breast cancer xenograft model that can potentiate additive effects to radiation in vivo.


Translational Oncology | 2015

Quantification of Ultrasonic Scattering Properties of In Vivo Tumor Cell Death in Mouse Models of Breast Cancer

Hadi Tadayyon; Lakshmanan Sannachi; Ali Sadeghi-Naini; Azza Al-Mahrouki; William T. Tran; Michael C. Kolios; Gregory J. Czarnota

INTRODUCTION: Quantitative ultrasound parameters based on form factor models were investigated as potential biomarkers of cell death in breast tumor (MDA-231) xenografts treated with chemotherapy. METHODS: Ultrasound backscatter radiofrequency data were acquired from MDA-231 breast cancer tumor–bearing mice (n = 20) before and after the administration of chemotherapy drugs at two ultrasound frequencies: 7 MHz and 20 MHz. Radiofrequency spectral analysis involved estimating the backscatter coefficient from regions of interest in the center of the tumor, to which form factor models were fitted, resulting in estimates of average scatterer diameter and average acoustic concentration (AAC). RESULTS: The ∆AAC parameter extracted from the spherical Gaussian model was found to be the most effective cell death biomarker (at the lower frequency range, r2 = 0.40). At both frequencies, AAC in the treated tumors increased significantly (P = .026 and .035 at low and high frequencies, respectively) 24 hours after treatment compared with control tumors. Furthermore, stepwise multiple linear regression analysis of the low-frequency data revealed that a multiparameter quantitative ultrasound model was strongly correlated to cell death determined histologically posttreatment (r2 = 0.74). CONCLUSION: The Gaussian form factor model–based scattering parameters can potentially be used to track the extent of cell death at clinically relevant frequencies (7 MHz). The 20-MHz results agreed with previous findings in which parameters related to the backscatter intensity (i.e., AAC) increased with cell death. The findings suggested that, in addition to the backscatter coefficient parameter ∆AAC, biological features including tumor heterogeneity and initial tumor volume were important factors in the prediction of cell death response.


Oncotarget | 2016

Multiparametric Monitoring of Chemotherapy Treatment Response in Locally Advanced Breast Cancer Using Quantitative Ultrasound and Diffuse Optical Spectroscopy

William T. Tran; Charmaine Childs; Lee Chin; Elzbieta Slodkowska; Lakshmanan Sannachi; Hadi Tadayyon; Elyse Watkins; Sharon Lemon Wong; Belinda Curpen; Ahmed El Kaffas; Azza Al-Mahrouki; Ali Sadeghi-Naini; Gregory J. Czarnota

Purpose This study evaluated pathological response to neoadjuvant chemotherapy using quantitative ultrasound (QUS) and diffuse optical spectroscopy imaging (DOSI) biomarkers in locally advanced breast cancer (LABC). Materials and Methods The institutions ethics review board approved this study. Subjects (n = 22) gave written informed consent prior to participating. US and DOSI data were acquired, relative to the start of neoadjuvant chemotherapy, at weeks 0, 1, 4, 8 and preoperatively. QUS parameters including the mid-band fit (MBF), 0-MHz intercept (SI), and the spectral slope (SS) were determined from tumor ultrasound data using spectral analysis. In the same patients, DOSI was used to measure parameters relating to tumor hemoglobin and composition. Discriminant analysis and receiver-operating characteristic (ROC) analysis was used to classify clinical and pathological response during treatment and to estimate the area under the curve (AUC). Additionally, multivariate analysis was carried out for pairwise QUS/DOSI parameter combinations using a logistic regression model. Results Individual QUS and DOSI parameters, including the (SI), oxy-hemoglobin (HbO2), and total hemoglobin (HbT) were significant markers for response after one week of treatment (p < 0.01). Multivariate (pairwise) combinations increased the sensitivity, specificity and AUC at this time; the SI + HbO2 showed a sensitivity/specificity of 100%, and an AUC of 1.0. Conclusions QUS and DOSI demonstrated potential as coincident markers for treatment response and may potentially facilitate response-guided therapies. Multivariate QUS and DOSI parameters increased the sensitivity and specificity of classifying LABC patients as early as one week after treatment.

Collaboration


Dive into the William T. Tran's collaboration.

Top Co-Authors

Avatar

Gregory J. Czarnota

Sunnybrook Health Sciences Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Azza Al-Mahrouki

Sunnybrook Health Sciences Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anoja Giles

Sunnybrook Health Sciences Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elzbieta Slodkowska

Sunnybrook Health Sciences Centre

View shared research outputs
Researchain Logo
Decentralizing Knowledge