Hadi Tadayyon
University of Toronto
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hadi Tadayyon.
Medical Physics | 2014
Hadi Tadayyon; Ali Sadeghi-Naini; Lauren A. Wirtzfeld; Frances C. Wright; Gregory J. Czarnota
PURPOSE Tumor grading is an important part of breast cancer diagnosis and currently requires biopsy as its standard. Here, the authors investigate quantitative ultrasound parameters in locally advanced breast cancers that can potentially separate tumors from normal breast tissue and differentiate tumor grades. METHODS Ultrasound images and radiofrequency data from 42 locally advanced breast cancer patients were acquired and analyzed. Parameters related to the linear regression of the power spectrum--midband fit, slope, and 0-MHz-intercept--were determined from breast tumors and normal breast tissues. Mean scatterer spacing was estimated from the spectral autocorrelation, and the effective scatterer diameter and effective acoustic concentration were estimated from the Gaussian form factor. Parametric maps of each quantitative ultrasound parameter were constructed from the gated radiofrequency segments in tumor and normal tissue regions of interest. In addition to the mean values of the parametric maps, higher order statistical features, computed from gray-level co-occurrence matrices were also determined and used for characterization. Finally, linear and quadratic discriminant analyses were performed using combinations of quantitative ultrasound parameters to classify breast tissues. RESULTS Quantitative ultrasound parameters were found to be statistically different between tumor and normal tissue (p < 0.05). The combination of effective acoustic concentration and mean scatterer spacing could separate tumor from normal tissue with 82% accuracy, while the addition of effective scatterer diameter to the combination did not provide significant improvement (83% accuracy). Furthermore, the two advanced parameters, including effective scatterer diameter and mean scatterer spacing, were found to be statistically differentiating among grade I, II, and III tumors (p = 0.014 for scatterer spacing, p = 0.035 for effective scatterer diameter). The separation of the tumor grades further improved when the textural features of the effective scatterer diameter parametric map were combined with the mean value of the map (p = 0.004). CONCLUSIONS Overall, the binary classification results (tumor versus normal tissue) were more promising than tumor grade assessment. Combinations of advanced parameters can further improve the separation of tumors from normal tissue compared to the use of linear regression parameters. While the linear regression parameters were sufficient for characterizing breast tumors and normal breast tissues, advanced parameters and their textural features were required to better characterize tumor subtypes.
Medical Physics | 2013
Ali Sadeghi-Naini; Naum Papanicolau; Omar Falou; Hadi Tadayyon; Justin Lee; Judit Zubovits; Alireza Sadeghian; Raffi Karshafian; Azza Al-Mahrouki; Anoja Giles; Michael C. Kolios; Gregory J. Czarnota
PURPOSE Currently, no clinical imaging modality is used routinely to assess tumor response to cancer therapies within hours to days of the delivery of treatment. Here, the authors demonstrate the efficacy of ultrasound at a clinically relevant frequency to quantitatively detect changes in tumors in response to cancer therapies using preclinical mouse models. METHODS Conventional low-frequency and corresponding high-frequency ultrasound (ranging from 4 to 28 MHz) were used along with quantitative spectroscopic and signal envelope statistical analyses on data obtained from xenograft tumors treated with chemotherapy, x-ray radiation, as well as a novel vascular targeting microbubble therapy. RESULTS Ultrasound-based spectroscopic biomarkers indicated significant changes in cell-death associated parameters in responsive tumors. Specifically changes in the midband fit, spectral slope, and 0-MHz intercept biomarkers were investigated for different types of treatment and demonstrated cell-death related changes. The midband fit and 0-MHz intercept biomarker derived from low-frequency data demonstrated increases ranging approximately from 0 to 6 dBr and 0 to 8 dBr, respectively, depending on treatments administrated. These data paralleled results observed for high-frequency ultrasound data. Statistical analysis of ultrasound signal envelope was performed as an alternative method to obtain histogram-based biomarkers and provided confirmatory results. Histological analysis of tumor specimens indicated up to 61% cell death present in the tumors depending on treatments administered, consistent with quantitative ultrasound findings indicating cell death. Ultrasound-based spectroscopic biomarkers demonstrated a good correlation with histological morphological findings indicative of cell death (r2=0.71, 0.82; p<0.001). CONCLUSIONS In summary, the results provide preclinical evidence, for the first time, that quantitative ultrasound used at a clinically relevant frequency, in addition to high-frequency ultrasound, can detect tissue changes associated with cell death in vivo in response to cancer treatments.
Medical Image Analysis | 2015
Lakshmanan Sannachi; Hadi Tadayyon; Ali Sadeghi-Naini; William T. Tran; Sonal Gandhi; Frances C. Wright; Michael L. Oelze; Gregory J. Czarnota
Tumor response to neoadjuvant chemotherapy in patients (n=30) with locally advanced breast cancer (LABC) was examined using quantitative ultrasound. Three ultrasound backscatter parameters, the integrated backscatter coefficient (IBC), average scatterer diameter (ASD), and average acoustic concentration (AAC), were estimated from tumors prior to treatment and at four times during neoadjuvant chemotherapy treatment (weeks 0, 1, 4, 8, and prior to surgery) and compared to ultimate clinical and pathological tumor responses. Results demonstrated that among all parameters, AAC was the best indicator of tumor response early after starting treatment. The AAC parameter increased substantially in treatment-responding patients as early as one week after treatment initiation, further increased at week 4, and attained a maximum at week 8. In contrast, the backscatter parameters from non-responders did not show any changes after treatment initiation. The two patient populations exhibited a statistically significant difference in changes of AAC (p<0.001) and ASD (p=0.023) over all treatment times examined. The best prediction of treatment response was achieved with the combination of AAC and ASD at week 4 (82% sensitivity, 100% specificity, and 86% accuracy) of 12-18 weeks of treatment. The survival of patients with responsive ultrasound parameters was higher than patients with non-responsive ultrasound parameters (35 ± 11 versus 27 ± 11 months, respectively, p=0.043). This study demonstrates that ultrasound parameters derived from the ultrasound backscattered power spectrum can potentially serve as non-invasive early measures of clinical tumor response to chemotherapy treatments.
Translational Oncology | 2014
Hadi Tadayyon; Ali Sadeghi-Naini; Gregory J. Czarnota
PURPOSE: The identification of tumor pathologic characteristics is an important part of breast cancer diagnosis, prognosis, and treatment planning but currently requires biopsy as its standard. Here, we investigated a noninvasive quantitative ultrasound method for the characterization of breast tumors in terms of their histologic grade, which can be used with clinical diagnostic ultrasound data. METHODS: Tumors of 57 locally advanced breast cancer patients were analyzed as part of this study. Seven quantitative ultrasound parameters were determined from each tumor region from the radiofrequency data, including mid-band fit, spectral slope, 0-MHz intercept, scatterer spacing, attenuation coefficient estimate, average scatterer diameter, and average acoustic concentration. Parametric maps were generated corresponding to the region of interest, from which four textural features, including contrast, energy, homogeneity, and correlation, were determined as further tumor characterization parameters. Data were examined on the basis of tumor subtypes based on histologic grade (grade I versus grade II to III). RESULTS: Linear discriminant analysis of the means of the parametric maps resulted in classification accuracy of 79%. On the other hand, the linear combination of the texture features of the parametric maps resulted in classification accuracy of 82%. Finally, when both the means and textures of the parametric maps were combined, the best classification accuracy was obtained (86%). CONCLUSIONS: Textural characteristics of quantitative ultrasound spectral parametric maps provided discriminant information about different types of breast tumors. The use of texture features significantly improved the results of ultrasonic tumor characterization compared to conventional mean values. Thus, this study suggests that texture-based quantitative ultrasound analysis of in vivo breast tumors can provide complementary diagnostic information about tumor histologic characteristics.
IEEE Transactions on Medical Imaging | 2014
Mehrdad J. Gangeh; Ali Sadeghi-Naini; Michael Diu; Hadi Tadayyon; Mohamed S. Kamel; Gregory J. Czarnota
Quantitative ultrasound (QUS) spectroscopic techniques in conjunction with maximum mean discrepancy (MMD) have been proposed to detect, and to classify noninvasively the levels of cell death in response to cancer therapy administration in tumor models. Evaluation of xenograft tumor responses to cancer treatments were carried out using conventional-frequency ultrasound at different times after chemotherapy exposure. Ultrasound data were analyzed using spectroscopic techniques and multi-parametric QUS spectral maps were generated. MMD was applied as a distance criterion, measuring alterations in each tumor in response to chemotherapy, and the extent of cell death was classified into less/more than 20% and 40% categories. Statistically significant differences were observed between “pre-” and “post-treatment” groups at different times after chemotherapy exposure, suggesting a high capability of proposed framework for detecting tumor response noninvasively. Promising results were also obtained for categorizing the extent of cell death response in each tumor using the proposed framework, with gold standard histological quantification of cell death as ground truth. The best classification results were obtained using MMD when applied on histograms of QUS parametric maps. In this case, classification accuracies of 84.7% and 88.2% were achieved for categorizing extent of tumor cell death into less/more than 20% and 40%, respectively.
international symposium on biomedical imaging | 2016
Hamid R. Tizhoosh; Mehrdad J. Gangeh; Hadi Tadayyon; Gregory J. Czarnota
Quantitative ultrasound (QUS) methods provide a promising framework that can non-invasively and inexpensively be used to predict or assess the tumour response to cancer treatment. The first step in using the QUS methods is to select a region of interest (ROI) inside the tumour in ultrasound images. Manual segmentation, however, is very time consuming and tedious. In this paper, a semi-automated approach will be proposed to roughly localize an ROI for a tumour in ultrasound images of patients with locally advanced breast cancer (LABC). Content-based barcodes, a recently introduced binary descriptor based on Radon transform, were used in order to find similar cases and estimate a bounding box surrounding the tumour. Experiments with 33 B-scan images resulted in promising results with an accuracy of 81%.
IEEE Transactions on Medical Imaging | 2016
Mehrdad J. Gangeh; Hadi Tadayyon; Lakshmanan Sannachi; Ali Sadeghi-Naini; William T. Tran; Gregory J. Czarnota
A noninvasive computer-aided-theragnosis (CAT) system was developed for the early therapeutic cancer response assessment in patients with locally advanced breast cancer (LABC) treated with neoadjuvant chemotherapy. The proposed CAT system was based on multi-parametric quantitative ultrasound (QUS) spectroscopic methods in conjunction with advanced machine learning techniques. Specifically, a kernel-based metric named maximum mean discrepancy (MMD), a technique for learning from imbalanced data based on random undersampling, and supervised learning were investigated with response-monitoring data from LABC patients. The CAT system was tested on 56 patients using statistical significance tests and leave-one-subject-out classification techniques. Textural features using state-of-the-art local binary patterns (LBP), and gray-scale intensity features were extracted from the spectral parametric maps in the proposed CAT system. The system indicated significant differences in changes between the responding and non-responding patient populations as well as high accuracy, sensitivity, and specificity in discriminating between the two patient groups early after the start of treatment, i.e., on weeks 1 and 4 of several months of treatment. The proposed CAT system achieved an accuracy of 85%, 87%, and 90% on weeks 1, 4 and 8, respectively. The sensitivity and specificity of developed CAT system for the same times was 85%, 95%, 90% and 85%, 85%, 91%, respectively. The proposed CAT system thus establishes a noninvasive framework for monitoring cancer treatment response in tumors using clinical ultrasound imaging in conjunction with machine learning techniques. Such a framework can potentially facilitate the detection of refractory responses in patients to treatment early on during a course of therapy to enable possibly switching to more efficacious treatments.
Oncotarget | 2016
Hadi Tadayyon; Lakshmanan Sannachi; Mehrdad J. Gangeh; Ali Sadeghi-Naini; William T. Tran; Maureen E. Trudeau; Kathleen I. Pritchard; Sonal Ghandi; Sunil Verma; Gregory J. Czarnota
Purpose This study demonstrated the ability of quantitative ultrasound (QUS) parameters in providing an early prediction of tumor response to neoadjuvant chemotherapy (NAC) in patients with locally advanced breast cancer (LABC). Methods Using a 6-MHz array transducer, ultrasound radiofrequency (RF) data were collected from 58 LABC patients prior to NAC treatment and at weeks 1, 4, and 8 of their treatment, and prior to surgery. QUS parameters including midband fit (MBF), spectral slope (SS), spectral intercept (SI), spacing among scatterers (SAS), attenuation coefficient estimate (ACE), average scatterer diameter (ASD), and average acoustic concentration (AAC) were determined from the tumor region of interest. Ultrasound data were compared with the ultimate clinical and pathological response of the patients tumor to treatment and patient recurrence-free survival. Results Multi-parameter discriminant analysis using the κ-nearest-neighbor classifier demonstrated that the best response classification could be achieved using the combination of MBF, SS, and SAS, with an accuracy of 60 ± 10% at week 1, 77 ± 8% at week 4 and 75 ± 6% at week 8. Furthermore, when the QUS measurements at each time (week) were combined with pre-treatment (week 0) QUS values, the classification accuracies improved (70 ± 9% at week 1, 80 ± 5% at week 4, and 81 ± 6% at week 8). Finally, the multi-parameter QUS model demonstrated a significant difference in survival rates of responding and non-responding patients at weeks 1 and 4 (p=0.035, and 0.027, respectively). Conclusion This study demonstrated for the first time, using new parameters tested on relatively large patient cohort and leave-one-out classifier evaluation, that a hybrid QUS biomarker including MBF, SS, and SAS could, with relatively high sensitivity and specificity, detect the response of LABC tumors to NAC as early as after 4 weeks of therapy. The findings of this study also suggested that incorporating pre-treatment QUS parameters of a tumor improved the classification results. This work demonstrated the potential of QUS and machine learning methods for the early assessment of breast tumor response to NAC and providing personalized medicine with regards to the treatment planning of refractory patients.
Translational Oncology | 2015
Hadi Tadayyon; Lakshmanan Sannachi; Ali Sadeghi-Naini; Azza Al-Mahrouki; William T. Tran; Michael C. Kolios; Gregory J. Czarnota
INTRODUCTION: Quantitative ultrasound parameters based on form factor models were investigated as potential biomarkers of cell death in breast tumor (MDA-231) xenografts treated with chemotherapy. METHODS: Ultrasound backscatter radiofrequency data were acquired from MDA-231 breast cancer tumor–bearing mice (n = 20) before and after the administration of chemotherapy drugs at two ultrasound frequencies: 7 MHz and 20 MHz. Radiofrequency spectral analysis involved estimating the backscatter coefficient from regions of interest in the center of the tumor, to which form factor models were fitted, resulting in estimates of average scatterer diameter and average acoustic concentration (AAC). RESULTS: The ∆AAC parameter extracted from the spherical Gaussian model was found to be the most effective cell death biomarker (at the lower frequency range, r2 = 0.40). At both frequencies, AAC in the treated tumors increased significantly (P = .026 and .035 at low and high frequencies, respectively) 24 hours after treatment compared with control tumors. Furthermore, stepwise multiple linear regression analysis of the low-frequency data revealed that a multiparameter quantitative ultrasound model was strongly correlated to cell death determined histologically posttreatment (r2 = 0.74). CONCLUSION: The Gaussian form factor model–based scattering parameters can potentially be used to track the extent of cell death at clinically relevant frequencies (7 MHz). The 20-MHz results agreed with previous findings in which parameters related to the backscatter intensity (i.e., AAC) increased with cell death. The findings suggested that, in addition to the backscatter coefficient parameter ∆AAC, biological features including tumor heterogeneity and initial tumor volume were important factors in the prediction of cell death response.
Oncotarget | 2016
William T. Tran; Charmaine Childs; Lee Chin; Elzbieta Slodkowska; Lakshmanan Sannachi; Hadi Tadayyon; Elyse Watkins; Sharon Lemon Wong; Belinda Curpen; Ahmed El Kaffas; Azza Al-Mahrouki; Ali Sadeghi-Naini; Gregory J. Czarnota
Purpose This study evaluated pathological response to neoadjuvant chemotherapy using quantitative ultrasound (QUS) and diffuse optical spectroscopy imaging (DOSI) biomarkers in locally advanced breast cancer (LABC). Materials and Methods The institutions ethics review board approved this study. Subjects (n = 22) gave written informed consent prior to participating. US and DOSI data were acquired, relative to the start of neoadjuvant chemotherapy, at weeks 0, 1, 4, 8 and preoperatively. QUS parameters including the mid-band fit (MBF), 0-MHz intercept (SI), and the spectral slope (SS) were determined from tumor ultrasound data using spectral analysis. In the same patients, DOSI was used to measure parameters relating to tumor hemoglobin and composition. Discriminant analysis and receiver-operating characteristic (ROC) analysis was used to classify clinical and pathological response during treatment and to estimate the area under the curve (AUC). Additionally, multivariate analysis was carried out for pairwise QUS/DOSI parameter combinations using a logistic regression model. Results Individual QUS and DOSI parameters, including the (SI), oxy-hemoglobin (HbO2), and total hemoglobin (HbT) were significant markers for response after one week of treatment (p < 0.01). Multivariate (pairwise) combinations increased the sensitivity, specificity and AUC at this time; the SI + HbO2 showed a sensitivity/specificity of 100%, and an AUC of 1.0. Conclusions QUS and DOSI demonstrated potential as coincident markers for treatment response and may potentially facilitate response-guided therapies. Multivariate QUS and DOSI parameters increased the sensitivity and specificity of classifying LABC patients as early as one week after treatment.