Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where William Wickner is active.

Publication


Featured researches published by William Wickner.


Cell | 1996

Sec18p (NSF)-Driven Release of Sec17p (α-SNAP) Can Precede Docking and Fusion of Yeast Vacuoles

Andreas Mayer; William Wickner; Albert Haas

S. cerevisiae inherits its vacuole by projecting vacuole-derived membrane vesicles and tubules into the bud, where they fuse to establish the daughter vacuole. This homotypic fusion event can be assayed in vitro. It requires Sec17p and Sec18p, the homologs of the mammalian alpha-SNAP and NSF, which cooperate in multiple steps of membrane trafficking. We now report that Sec17p, Sec18p, and ATP are only needed for an early stage of the reaction that results in Sec17p release. Sec17p and Sec18p actions precede, and are needed for, the step employing the Ras-like GTPase Ypt7p. Sec18p-driven release of Sec17p can even precede vacuole docking, as it can occur prior to mixing of vacuoles and is insensitive to vacuole concentration. Sec17p and Sec18p thus may function in a predocking stage of the reaction, rather than in bilayer fusion per se.


Cell | 1994

SecA promotes preprotein translocation by undergoing ATP-driven cycles of membrane insertion and deinsertion

Anastassios Economou; William Wickner

SecA, the peripheral subunit of E. coli preprotein translocase, alternates between a membrane inserted and a deinserted state as part of the catalytic cycle of preprotein translocation. When SecA is complexed with SecY/E and preprotein, ATP drives a profound conformational change, leading to membrane insertion of a 30 kDa domain of SecA. The inserted domain is protease-inaccessible from the cytosolic side of the membrane, but becomes accessible upon membrane disruption. Concomitant with 30 kDa domain insertion, approximately 20 aminoacyl residues of the preprotein are translocated. Additional ATP, which may be hydrolyzed at the second ATP site of SecA, releases the translocated preprotein and allows the 30 kDa domain to deinsert, whence it can exchange with cytosolic SecA. Thus, SecA is the mobile subunit of an integral membrane transporter, consuming ATP during both the insertion and deinsertion phases of its catalytic cycle while guiding preprotein segments across the membrane.


Cell | 1990

The binding cascade of SecB to SecA to SecY E mediates preprotein targeting to the E. coli plasma membrane

Franz-Ulrich Hartl; Stewart H. Lecker; Elmar Schiebel; Joseph P. Hendrick; William Wickner

The export of many E. coli proteins such as proOmpA requires the cytosolic chaperone SecB and the membrane-bound preprotein translocase. Translocase is a multisubunit enzyme with the SecA protein as its peripheral membrane domain and the SecY/E protein as its integral domain. SecB, by binding to proOmpA in the cytosol, prevents its aggregation or association with membranes at nonproductive sites. The SecA receptor binds the proOmpA-SecB complex (Kd approximately 6 x 10(-8) M) through direct recognition of both the SecB (Kd approximately 2 x 10(-7) M) as well as the leader and mature domains of the precursor protein. SecB has a dual function in stabilizing the precursor and in passing it on to membrane-bound SecA, the next step in the pathway. SecA itself is bound to the membrane by its affinity (Kd approximately 4 x 10(-8) M) for SecY/E and for acidic lipids. The functions of SecB and SecA as a two-stage receptor system are linked by their affinity for each other.


Cell | 1990

The purified E. coli integral membrane protein SecY E is sufficient for reconstitution of SecA-dependent precursor protein translocation

Lorna Brundage; Joseph P. Hendrick; Elmar Schiebel; Arnold J. M. Driessen; William Wickner

We have previously reconstituted the soluble phase of precursor protein translocation in vitro using purified proteins (the precursor proOmpA, the chaperone SecB, and the ATPase SecA) in addition to isolated inner membrane vesicles. We now report the isolation of the SecY/E protein, the integral membrane protein component of the E. coli preprotein translocase. The SecY/E protein, reconstituted into proteoliposomes, acts together with SecA protein to support translocation of proOmpA, the precursor form of outer membrane protein A. This translocation requires ATP and is strongly stimulated by the protonmotive force. The initial rates and the extents of translocation into either native membrane vesicles or proteoliposomes with pure SecY/E are comparable. The SecY/E protein consists of SecY, SecE, and an additional polypeptide. Antiserum against SecY immunoprecipitates all three components of the SecY/E protein.


Cell | 1991

ΔμH+ and ATP function at different steps of the catalytic cycle of preprotein translocase

Elmar Schiebel; Arnold J. M. Driessen; Franz-Ulrich Hartl; William Wickner

Preprotein translocation in E. coli requires ATP, the membrane electrochemical potential delta mu H+, and translocase, an enzyme with an ATPase domain (SecA) and the membrane-embedded SecY/E. Studies of translocase and proOmpA binds to the SecA domain. Second, SecA binds ATP. Third, ATP-binding energy permits translocation of approximately 20 residues of proOmpA. Fourth, ATP hydrolysis releases proOmpA. ProOmpA may then rebind to SecA and reenter this cycle, allowing progress through a series of transmembrane intermediates. In the absence of delta mu H+ or association with SecA, proOmpA passes backward through the membrane, but moves forward when either ATP and SecA or a membrane electrochemical potential is supplied. However, in the presence of delta mu H+ (fifth step), proOmpA rapidly completes translocation. delta mu H(+)-driven translocation is blocked by SecA plus nonhydrolyzable ATP analogs, indicating that delta mu H+ drives translocation when ATP and proOmpA are not bound to SecA.


Science | 2005

Protein Translocation Across Biological Membranes

William Wickner; Randy Schekman

Subcellular compartments have unique protein compositions, yet protein synthesis only occurs in the cytosol and in mitochondria and chloroplasts. How do proteins get where they need to go? The first steps are targeting to an organelle and efficient translocation across its limiting membrane. Given that most transport systems are exquisitely substrate specific, how are diverse protein sequences recognized for translocation? Are they translocated as linear polypeptide chains or after folding? During translocation, how are diverse amino acyl side chains accommodated? What are the proteins and the lipid environment that catalyze transport and couple it to energy? How is translocation coordinated with protein synthesis and folding, and how are partially translocated transmembrane proteins released into the lipid bilayer? We review here the marked progress of the past 35 years and salient questions for future work. Subcellular compartments have unique protein compositions, yet protein synthesis only occurs in the cytosol and in mitochondria and chloroplasts. How do proteins get where they need to go? The first steps are targeting to an organelle and efficient translocation across its limiting membrane. Given that most transport systems are exquisitely substrate specific, how are diverse protein sequences recognized for translocation? Are they translocated as linear polypeptide chains or after folding? During translocation, how are diverse amino acyl side chains accommodated? What are the proteins and the lipid environment that catalyze transport and couple it to energy? How is translocation coordinated with protein synthesis and folding, and how are partially translocated transmembrane proteins released into the lipid bilayer? We review here the marked progress of the past 35 years and salient questions for future work.


Nature | 1998

Defining the functions of trans-SNARE pairs

Christian Ungermann; Ken Sato; William Wickner

The homotypic fusion of yeast vacuoles includes a ‘docking’ step, which we show here to consist of two sequential reactions: a reversible ‘tethering’ mediated by the GTPase Ypt7, and ‘SNARE pairing’, in which SNARE proteins from opposite membranes form a complex in trans. The function of this trans-SNARE complex must be transient, as the complex can be disassembled by excess Sec18 in the presence of Sec17 and ATP without influencing the fusion rate. These data indicate that SNARE pairing may transiently signal to downstream factors, leading to fusion.


The EMBO Journal | 1989

SecA protein hydrolyzes ATP and is an essential component of the protein translocation ATPase of Escherichia coli.

Roland Lill; K Cunningham; L A Brundage; K Ito; D Oliver; William Wickner

Bacterial protein export requires two forms of energy input, ATP and the membrane electrochemical potential. Using an in vitro reaction reconstituted with purified soluble and peripheral membrane components, we can now directly measure the translocation‐coupled hydrolysis of ATP. This translocation ATPase requires inner membrane vesicles, SecA protein and translocation‐competent proOmpA. The stimulatory activity of membrane vesicles can be blocked by either antibody to the SecY protein or by preparing the membranes from a secY‐thermosensitive strain which had been incubated at the non‐permissive temperature in vivo. The SecA protein itself has more than one ATP binding site. 8‐azido‐ATP inactivates SecA for proOmpA translocation and for translocation ATPase, yet does not inhibit a low level of ATP hydrolysis inherent in the isolated SecA protein. These data show that the SecA protein has a central role in coupling the hydrolysis of ATP to the transfer of pre‐secretory proteins across the membrane.


Cell | 1995

SecA membrane cycling at SecYEG is driven by distinct ATP binding and hydrolysis events and is regulated by SecD and SecF.

Anastassios Economou; Joseph A. Pogliano; Jon Beckwith; William Wickner

The SecA subunit of E. coli preprotein translocase promotes protein secretion during cycles of membrane insertion and deinsertion at SecYEG. This process is regulated both by nucleotide binding and hydrolysis and by the SecD and SecF proteins. In the presence of associated preprotein, the energy of ATP binding at nucleotide-binding domain 1 (NBD1) drives membrane insertion of a 30 kDa domain of SecA, while deinsertion of SecA requires the hydrolysis of this ATP. SecD and SecF stabilize the inserted state of SecA. ATP binding at NBD2, though needed for preprotein translocation, is not needed for SecA insertion or deinsertion.


The EMBO Journal | 1997

Distinct catalytic roles of the SecYE, SecG and SecDFyajC subunits of preprotein translocase holoenzyme.

Franck Duong; William Wickner

Escherichia coli preprotein translocase contains a membrane‐embedded trimeric complex of SecY, SecE and SecG (SecYEG) and the peripheral SecA protein. SecYE is the conserved functional ‘core’ of the SecYEG complex. Although sufficient to provide sites for high‐affinity binding and membrane insertion of SecA, and for its activation as a preprotein‐dependent ATPase, SecYE has only very low capacity to support translocation. The proteins encoded by the secD operon—SecD, SecF and YajC—also form an integral membrane heterotrimeric complex (SecDFyajC). Physical and functional studies show that these two trimeric complexes are associated to form SecYEGDFyajC, the hexameric integral membrane domain of the preprotein translocase ‘holoenzyme’. Either SecG or SecDFyajC can support the translocation activity of SecYE by facilitating the ATP‐driven cycle of SecA membrane insertion and de‐insertion at different stages of the translocation reaction. Our findings show that each of the prokaryote‐specific subunits (SecA, SecG and SecDFyajC) function together to promote preprotein movement at the SecYE core of the translocase.

Collaboration


Dive into the William Wickner's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Youngsoo Jun

Gwangju Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Alexey J. Merz

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hao Xu

University of Southern Mississippi

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge