Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexey J. Merz is active.

Publication


Featured researches published by Alexey J. Merz.


Nature | 2000

Pilus retraction powers bacterial twitching motility

Alexey J. Merz; Magdalene So; Michael P. Sheetz

Twitching and social gliding motility allow many Gram negative bacteria to crawl along surfaces, and are implicated in a wide range of biological functions. Type IV pili (Tfp) are required for twitching and social gliding, but the mechanism by which these filaments promote motility has remained enigmatic. Here we use laser tweezers to show that Tfp forcefully retract. Neisseria gonorrhoeae cells that produce Tfp actively crawl on a glass surface and form adherent microcolonies. When laser tweezers are used to place and hold cells near a microcolony, retractile forces pull the cells toward the microcolony. In quantitative experiments, the Tfp of immobilized bacteria bind to latex beads and retract, pulling beads from the tweezers at forces that can exceed 80 pN. Episodes of retraction terminate with release or breakage of the Tfp tether. Both motility and retraction mediated by Tfp occur at about 1 µm s-1 and require protein synthesis and function of the PilT protein. Our experiments establish that Tfp filaments retract, generate substantial force and directly mediate cell movement.


Cell Host & Microbe | 2010

A type VI secretion system of Pseudomonas aeruginosa targets a toxin to bacteria.

Rachel D. Hood; Pragya Singh; FoSheng Hsu; Tüzün Güvener; Mike A. Carl; Rex R.S. Trinidad; Julie M. Silverman; Brooks B. Ohlson; Kevin G. Hicks; Rachael L. Plemel; Mo Li; Sandra Schwarz; Wenzhuo Y. Wang; Alexey J. Merz; David R. Goodlett; Joseph D. Mougous

The functional spectrum of a secretion system is defined by its substrates. Here we analyzed the secretomes of Pseudomonas aeruginosa mutants altered in regulation of the Hcp Secretion Island-I-encoded type VI secretion system (H1-T6SS). We identified three substrates of this system, proteins Tse1-3 (type six exported 1-3), which are coregulated with the secretory apparatus and secreted under tight posttranslational control. The Tse2 protein was found to be the toxin component of a toxin-immunity system and to arrest the growth of prokaryotic and eukaryotic cells when expressed intracellularly. In contrast, secreted Tse2 had no effect on eukaryotic cells; however, it provided a major growth advantage for P. aeruginosa strains, relative to those lacking immunity, in a manner dependent on cell contact and the H1-T6SS. This demonstration that the T6SS targets a toxin to bacteria helps reconcile the structural and evolutionary relationship between the T6SS and the bacteriophage tail and spike.


Current Opinion in Cell Biology | 2009

Vps-C Complexes: Gatekeepers of Endolysosomal Traffic

Daniel P. Nickerson; Christopher L. Brett; Alexey J. Merz

Genetic studies in yeast, plants, insects, and mammals have identified four universally conserved proteins, together called Vps Class C, that are essential for late endosome and lysosome assembly and for numerous endolysosomal trafficking pathways, including the terminal stages of autophagy. Two Vps-C complexes, HOPS and CORVET, incorporate diverse biochemical functions: they tether membranes, stimulate Rab nucleotide exchange, guide SNARE assembly to drive membrane fusion, and possibly act as ubiquitin ligases. Recent studies offer new insight into the complex relationships between Vps-C complexes and their cognate Rab small GTP-binding (G-)proteins at endosomes and lysosomes. Accumulating evidence supports the view that Vps-C complexes implement a regulatory logic that governs endomembrane identity and dynamics.


Journal of Cell Biology | 2004

Interdependent assembly of specific regulatory lipids and membrane fusion proteins into the vertex ring domain of docked vacuoles.

Rutilio A. Fratti; Youngsoo Jun; Alexey J. Merz; Nathan Margolis; William Wickner

Membrane microdomains are assembled by lipid partitioning (e.g., rafts) or by protein–protein interactions (e.g., coated vesicles). During docking, yeast vacuoles assemble “vertex” ring-shaped microdomains around the periphery of their apposed membranes. Vertices are selectively enriched in the Rab GTPase Ypt7p, the homotypic fusion and vacuole protein sorting complex (HOPS)–VpsC Rab effector complex, SNAREs, and actin. Membrane fusion initiates at vertex microdomains. We now find that the “regulatory lipids” ergosterol, diacylglycerol and 3- and 4-phosphoinositides accumulate at vertices in a mutually interdependent manner. Regulatory lipids are also required for the vertex enrichment of SNAREs, Ypt7p, and HOPS. Conversely, SNAREs and actin regulate phosphatidylinositol 3-phosphate vertex enrichment. Though the PX domain of the SNARE Vam7p has direct affinity for only 3-phosphoinositides, all the regulatory lipids which are needed for vertex assembly affect Vam7p association with vacuoles. Thus, the assembly of the vacuole vertex ring microdomain arises from interdependent lipid and protein partitioning and binding rather than either lipid partitioning or protein interactions alone.


Molecular Microbiology | 1999

Type IV pili of pathogenic Neisseriae elicit cortical plaque formation in epithelial cells

Alexey J. Merz; Caroline A. Enns; Magdalene So

The pathogenic Neisseriae Neisseria meningitidis and Neisseria gonorrhoeae, initiate colonization by attaching to host cells using type IV pili. Subsequent adhesive interactions are mediated through the binding of other bacterial adhesins, in particular the Opa family of outer membrane proteins. Here, we have shown that pilus‐mediated adhesion to host cells by either meningococci or gonococci triggers the rapid, localized formation of dramatic cortical plaques in host epithelial cells. Cortical plaques are enriched in both components of the cortical cytoskeleton and a subset of integral membrane proteins. These include: CD44v3, a heparan sulphate proteoglycan that may serve as an Opa receptor; EGFR, a receptor tyrosine kinase; CD44 and ICAM‐1, adhesion molecules known to mediate inflammatory responses; f‐actin; and ezrin, a component that tethers membrane components to the actin cytoskeleton. Genetic analyses reveal that cortical plaque formation is highly adhesin specific. Both pilE and pilC null mutants fail to induce cortical plaques, indicating that neisserial type IV pili are required for cortical plaque induction. Mutations in pilT, a gene required for pilus‐mediated twitching motility, confer a partial defect in cortical plaque formation. In contrast to type IV pili, many other neisserial surface structures are not involved in cortical plaque induction, including Opa, Opc, glycolipid GgO4‐binding adhesins, polysialic acid capsule or a particular lipooligosaccharide variant. Furthermore, it is shown that type IV pili allow gonococci to overcome the inhibitory effect of heparin, a soluble receptor analogue, on gonococcal invasion of Chang and A431 epithelial cells. These and other observations strongly suggest that type IV pili play an active role in initiating neisserial infection of the mucosal surface in vivo. The functions of type IV pili and other neisserial adhesins are discussed in the specific context of the mucosal microenvironment, and a multistep model for neisserial colonization of mucosal epithelia is proposed.


Journal of Cell Biology | 2003

Hierarchy of protein assembly at the vertex ring domain for yeast vacuole docking and fusion

Li Wang; Alexey J. Merz; Kevin Collins; William Wickner

Vacuole tethering, docking, and fusion proteins assemble into a “vertex ring” around the apposed membranes of tethered vacuoles before catalyzing fusion. Inhibitors of the fusion reaction selectively interrupt protein assembly into the vertex ring, establishing a causal assembly hierarchy: (a) The Rab GTPase Ypt7p mediates vacuole tethering and forms the initial vertex ring, independent of t-SNAREs or actin; (b) F-actin disassembly and GTP-bound Ypt7p direct the localization of other fusion factors; (c) The t-SNAREs Vam3p and Vam7p regulate each others vertex enrichment, but do not affect Ypt7p localization. The v-SNARE Vti1p is enriched at vertices by a distinct pathway that is independent of the t-SNAREs, whereas both t-SNAREs will localize to vertices when trans-pairing of SNAREs is blocked. Thus, trans-SNARE pairing is not required for SNARE vertex enrichment; and (d) The t-SNAREs regulate the vertex enrichment of both G-actin and the Ypt7p effector complex for homotypic fusion and vacuole protein sorting (HOPS). In accord with this hierarchy concept, the HOPS complex, at the end of the vertex assembly hierarchy, is most enriched at those vertices with abundant Ypt7p, which is at the start of the hierarchy. Our findings provide a unique view of the functional relationships between GTPases, SNAREs, and actin in membrane fusion.


Journal of Cell Biology | 2008

Efficient termination of vacuolar Rab GTPase signaling requires coordinated action by a GAP and a protein kinase

Christopher L. Brett; Rachael L. Plemel; Braden T. Lobingier; Marissa Vignali; Stanley Fields; Alexey J. Merz

Rab guanosine triphosphatases (GTPases) are pivotal regulators of membrane identity and dynamics, but the in vivo pathways that control Rab signaling are poorly defined. Here, we show that the GTPase-activating protein Gyp7 inactivates the yeast vacuole Rab Ypt7 in vivo. To efficiently terminate Ypt7 signaling, Gyp7 requires downstream assistance from an inhibitory casein kinase I, Yck3. Yck3 mediates phosphorylation of at least two Ypt7 signaling targets: a tether, the Vps-C/homotypic fusion and vacuole protein sorting (HOPS) subunit Vps41, and a SNARE, Vam3. Phosphorylation of both substrates is opposed by Ypt7-guanosine triphosphate (GTP). We further demonstrate that Ypt7 binds not one but two Vps-C/HOPS subunits: Vps39, a putative Ypt7 nucleotide exchange factor, and Vps41. Gyp7-stimulated GTP hydrolysis on Ypt7 therefore appears to trigger both passive termination of Ypt7 signaling and active kinase-mediated inhibition of Ypt7s downstream targets. We propose that signal propagation through the Ypt7 pathway is controlled by integrated feedback and feed-forward loops. In this model, Yck3 enforces a requirement for the activated Rab in docking and fusion.


Molecular Biology of the Cell | 2011

Subunit organization and Rab interactions of Vps-C protein complexes that control endolysosomal membrane traffic.

Rachael L. Plemel; Braden T. Lobingier; Christopher L. Brett; Cortney G. Angers; Daniel P. Nickerson; Andrew Paulsel; Debra Sprague; Alexey J. Merz

The Vps-C complexes, CORVET and HOPS, are key regulators of membrane traffic through late endosomes and lysosomes. In this study Vps-C intersubunit contacts, domain architecture, and interactions with Rab G proteins are systematically dissected using genetic and biochemical approaches.


The EMBO Journal | 2004

A soluble SNARE drives rapid docking, bypassing ATP and Sec17/18p for vacuole fusion

Naomi Thorngren; Kevin Collins; Rutilio A. Fratti; William Wickner; Alexey J. Merz

Membrane fusion requires priming, the disassembly of cis‐SNARE complexes by the ATP‐driven chaperones Sec18/17p. Yeast vacuole priming releases Vam7p, a soluble SNARE. Vam7p reassociation during docking allows trans‐SNARE pairing and fusion. We now report that recombinant Vam7p (rVam7p) enters into complex with other SNAREs in vitro and bypasses the need for Sec17p, Sec18p, and ATP. Thus, the sole essential function of vacuole priming in vitro is the release of Vam7p from cis‐SNARE complexes. In ‘bypass fusion’, without ATP but with added rVam7p, there are sufficient unpaired vacuolar SNAREs Vam3p, Vti1p, and Nyv1p to interact with Vam7p and support fusion. However, active SNARE proteins are not sufficient for bypass fusion. rVam7p does not bypass requirements for Rho GTPases,Vps33p, Vps39p, Vps41p, calmodulin, specific lipids, or Vph1p, a subunit of the V‐ATPase. With excess rVam7p, reduced levels of PI(3)P or functional Ypt7p suffice for bypass fusion. High concentrations of rVam7p allow the R‐SNARE Ykt6p to substitute for Nyv1p for fusion; this functional redundancy among vacuole SNAREs may explain why nyv1Δ strains lack the vacuole fragmentation seen with mutants in other fusion catalysts.


Journal of Cell Biology | 2002

A cycle of Vam7p release from and PtdIns 3-P–dependent rebinding to the yeast vacuole is required for homotypic vacuole fusion

Christine Boeddinghaus; Alexey J. Merz; Ricco Laage; Christian Ungermann

Vacuole fusion requires a coordinated cascade of priming, docking, and fusion. SNARE proteins have been implicated in the fusion itself, although their precise role in the cascade remains unclear. We now report that the vacuolar SNAP-23 homologue Vam7p is a mobile element of the SNARE complex, which moves from an initial association with the cis-SNARE complex via a soluble intermediate to the docking site. Soluble Vam7p is specifically recruited to vacuoles and can rescue a fusion reaction poisoned with antibodies to Vam7p. Both the recombinant Vam7p PX domain and a FYVE domain construct of human Hrs block the recruitment of Vam7p and vacuole fusion, demonstrating that phosphatidylinositol 3-phosphate is a primary receptor of Vam7p on vacuoles. We propose that the Vam7p cycle is linked to the availability of a lipid domain on yeast vacuoles, which is essential for coordinating the fusion reaction prior to and beyond docking.

Collaboration


Dive into the Alexey J. Merz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge