Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Willibald Schliemann is active.

Publication


Featured researches published by Willibald Schliemann.


Planta | 1999

Tyrosinase involved in betalain biosynthesis of higher plants

Ulrike Steiner; Willibald Schliemann; Hartmut Böhm; Dieter Strack

Abstract. A tyrosine-hydroxylating enzyme was partially purified from betacyanin-producing callus cultures of Portulaca grandiflora Hook. by using hydroxyapatite chromatography and gel filtration. It was characterized as a tyrosinase (EC 1.14.18.1 and EC 1.10.3.1) by inhibition experiments with copper-chelating agents and detection of concomitant o-diphenol oxidase activity. The tyrosinase catalysed both the formation of L-(3,4-dihydroxyphenyl)-alanine (Dopa) and cyclo-Dopa which are the pivotal precursors in betalain biosynthesis. The hydroxylating activity with a pH optimum of 5.7 was specific for L-tyrosine and exhibited reaction velocities with L-tyrosine and D-tyrosine in a ratio of 1:0.2. Other monophenolic substrates tested were not accepted. The enzyme appeared to be a monomer with an apparent molecular mass of ca. 53 kDa as estimated by gel filtration and SDS-PAGE. Some other betalain-producing plants and cell cultures were screened for tyrosinase activity; however, activities could only be detected in red callus cultures and plants of P. grandiflora as well as in plants, hairy roots and cell cultures of Beta vulgaris L. subsp. vulgaris (Garden Beet Group), showing a clear correlation between enzyme activity and betacyanin content in young B. vulgaris plants. We propose that this tyrosinase is specifically involved in the betalain biosynthesis of higher plants.


Journal of Chemical Ecology | 2003

Review Paper: Arbuscular Mycorrhiza: Biological, Chemical, and Molecular Aspects

Dieter Strack; Thomas Fester; Bettina Hause; Willibald Schliemann; Michael Walter

Mycorrhizas are the most important mutualistic symbioses on earth. The most prevalent type are the arbuscular mycorrhizas (AMs) that develop between roots of most terrestrial plants and fungal species of the Zygomycota. The AM fungi are able to grow into the root cortex forming intercellular hyphae from which highly branched structures, arbuscules, originate within cortex cells. The arbuscules are responsible for nutrient exchange between the host and the symbiont, transporting carbohydrates from the plant to the fungus and mineral nutrients, especially phosphate, and water from the fungus to the plant. Plants adapt their phosphate uptake to the interaction with the AM fungus by synthesis of specific phosphate transporters. Colonization of root cells induces dramatic changes in the cytoplasmic organization: vacuole fragmentation, transformation of the plasma membrane to a periarbuscular membrane covering the arbuscule, increase of the cytoplasm volume and numbers of cell organelles, as well as movement of the nucleus into a central position. The plastids form a dense network covering the symbiotic interface. In some of these changes, microtubules are most likely involved. With regard to the molecular crosstalk between the two organisms, a number of phytohormones (cytokinins, abscisic acid, jasmonate) as well as various secondary metabolites have been examined: (i) Jasmonates occur at elevated level, which is accompanied by cell-specific expression of genes involved in jasmonate biosynthesis that might be linked to strong carbohydrate sink function of AM roots and induced defense reactions; (ii) apocarotenoids (derivatives of mycorradicin and glycosylated cyclohexenones) accumulate in most mycorrhizal roots examined so far. Their biosynthesis via the nonmevalonate methylerythritol phosphate (MEP) pathway has been studied resulting in new insights into AM-specific gene expression and biosynthesis of secondary isoprenoids.


Plant Physiology | 2005

Organization and Metabolism of Plastids and Mitochondria in Arbuscular Mycorrhizal Roots of Medicago truncatula

Swanhild Lohse; Willibald Schliemann; Christian Ammer; Joachim Kopka; Dieter Strack; Thomas Fester

Colonization of root cortical cells by arbuscular mycorrhizal fungi leads to marked cytological changes of plastids and mitochondria. Plastids in particular are forming tubular extensions partially connecting individual organelles in a network-like way. These cytological changes correspond to an increased need for plastid and mitochondrial products during establishment and functioning of the symbiosis. The analysis of metabolite and transcript levels in mycorrhizal and nonmycorrhizal roots from Medicago truncatula revealed concomitant changes regarding a number of metabolic pathways. Our results indicate the activation of the mitochondrial tricarboxylic acid cycle and of plastid biosynthetic pathways producing fatty acids, amino acids, and apocarotenoids. These observations provide a general overview of structural and metabolic changes of plastids and mitochondria during colonization of root cortical cells by arbuscular mycorrhizal fungi.


Plant Physiology | 2008

RNA Interference-Mediated Repression of MtCCD1 in Mycorrhizal Roots of Medicago truncatula Causes Accumulation of C27 Apocarotenoids, Shedding Light on the Functional Role of CCD1

Daniela S. Floss; Willibald Schliemann; Jiirgen Schmidt; Dieter Strack; Michael Walter

Tailoring carotenoids by plant carotenoid cleavage dioxygenases (CCDs) generates various bioactive apocarotenoids. Recombinant CCD1 has been shown to catalyze symmetrical cleavage of C40 carotenoid substrates at 9,10 and 9′,10′ positions. The actual substrate(s) of the enzyme in planta, however, is still unknown. In this study, we have carried out RNA interference (RNAi)-mediated repression of a Medicago truncatula CCD1 gene in hairy roots colonized by the arbuscular mycorrhizal (AM) fungus Glomus intraradices. As a consequence, the normal AM-mediated accumulation of apocarotenoids (C13 cyclohexenone and C14 mycorradicin derivatives) was differentially modified. Mycorradicin derivatives were strongly reduced to 3% to 6% of the controls, while the cyclohexenone derivatives were only reduced to 30% to 47%. Concomitantly, a yellow-orange color appeared in RNAi roots. Based on ultraviolet light spectra and mass spectrometry analyses, the new compounds are C27 apocarotenoic acid derivatives. These metabolic alterations did not lead to major changes in molecular markers of the AM symbiosis, although a moderate shift to more degenerating arbuscules was observed in RNAi roots. The unexpected outcome of the RNAi approach suggests C27 apocarotenoids as the major substrates of CCD1 in mycorrhizal root cells. Moreover, literature data implicate C27 apocarotenoid cleavage as the general functional role of CCD1 in planta. A revised scheme of plant carotenoid cleavage in two consecutive steps is proposed, in which CCD1 catalyzes only the second step in the cytosol (C27 → C14 + C13), while the first step (C40 → C27 + C13) may be catalyzed by CCD7 and/or CCD4 inside plastids.


Phytochemistry | 2001

Betalains of Celosia argentea

Willibald Schliemann; Yi-Zhong Cai; Thomas Degenkolb; Jürgen Schmidt; Harold Corke

The betalains of yellow, orange and red inflorescences of common cockscomb (Celosia argentea var. cristata) were compared and proved to be qualitatively identical to those of feathered amaranth (Celosia argentea var. plumosa). In addition to the known compounds amaranthin and betalamic acid, the structures of three yellow pigments were elucidated to be immonium conjugates of betalamic acid with dopamine, 3-methoxytyramine and (S)-tryptophan by various spectroscopic techniques and comparison to synthesized reference compounds; the latter two are new to plants. Among the betacyanins occurring in yellow inflorescences in trace amounts, the presence of 2-descarboxy-betanidin, a dopamine-derived betacyanin, has been ascertained. The detection of high dopamine concentration may be of toxicological relevance in use of yellow inflorescences as a vegetable and in traditional Chinese medicine, common uses for the red inflorescences of common cockscomb.


Phytochemistry | 2010

Profiling of phenylpropanoids in transgenic low-sinapine oilseed rape (Brassica napus)

Karina Wolfram; Jürgen Schmidt; Victor Wray; Carsten Milkowski; Willibald Schliemann; Dieter Strack

A dsRNAi approach silencing a key enzyme of sinapate ester biosynthesis (UDP-glucose:sinapate glucosyltransferase, encoded by the UGT84A9 gene) in oilseed rape (Brassica napus) seeds was performed to reduce the anti-nutritive properties of the seeds by lowering the content of the major seed component sinapine (sinapoylcholine) and various minor sinapate esters. The transgenic seeds have been produced so far to the T6 generation and revealed a steady suppression of sinapate ester accumulation. HPLC analysis of the wild-type and transgenic seeds revealed, as in the previous generations, marked alterations of the sinapate ester pattern of the transformed seeds. Besides strong reduction of the amount of the known sinapate esters, HPLC analysis revealed unexpectedly the appearance of several minor hitherto unknown rapeseed constituents. These compounds were isolated and identified by mass spectrometric and NMR spectroscopic analyses. Structures of 11 components were elucidated to be 4-O-glucosides of syringate, caffeyl alcohol and its 7,8-dihydro derivative as well as of sinapate and sinapine, along with sinapoylated kaempferol glycosides, a hexoside of a cyclic spermidine alkaloid and a sinapine derivative with an ether-bridge to a C(6)-C(3)-unit. These results indicate a strong impact of the transgenic approach on the metabolic network of phenylpropanoids in B. napus seeds. Silencing of UGT84A9 gene expression disrupt the metabolic flow through sinapoylglucose and alters the amounts and nature of the phenylpropanoid endproducts.


Journal of Biological Chemistry | 2008

Functional and Structural Characterization of a Cation-dependent O-Methyltransferase from the Cyanobacterium Synechocystis sp. Strain PCC 6803

Jakub Grzegorz Kopycki; Milton T. Stubbs; Wolfgang Brandt; Martin Hagemann; Andrea Porzel; Jürgen Schmidt; Willibald Schliemann; Meinhart H. Zenk; Thomas Vogt

The coding sequence of the cyanobacterium Synechocystis sp. strain PCC 6803 slr0095 gene was cloned and functionally expressed in Escherichia coli. The corresponding enzyme was classified as a cation- and S-adenosyl-l-methionine-dependent O-methyltransferase (SynOMT), consistent with considerable amino acid sequence identities to eukaryotic O-methyltransferases (OMTs). The substrate specificity of SynOMT was similar with those of plant and mammalian CCoAOMT-like proteins accepting a variety of hydroxycinnamic acids and flavonoids as substrates. In contrast to the known mammalian and plant enzymes, which exclusively methylate the meta-hydroxyl position of aromatic di- and trihydroxy systems, Syn-OMT also methylates the para-position of hydroxycinnamic acids like 5-hydroxyferulic and 3,4,5-trihydroxycinnamic acid, resulting in the formation of novel compounds. The x-ray structure of SynOMT indicates that the active site allows for two alternative orientations of the hydroxylated substrates in comparison to the active sites of animal and plant enzymes, consistent with the observed preferred para-methylation and position promiscuity. Lys3 close to the N terminus of the recombinant protein appears to play a key role in the activity of the enzyme. The possible implications of these results with respect to modifications of precursors of polymers like lignin are discussed.


Phytochemistry | 1998

Intramolecular stabilization of acylated betacyanins

Willibald Schliemann; Dieter Strack

Abstract Racemization and stability of the betacyanins, betanin (betanidin 5-O-glucoside) and amaranthin(betanidin 5-O-glucuronosylglucoside), under acidic conditions were compared with those of the corresponding feruloyl derivatives, lampranthin II and celosianin II. Both acylbetacyanins showed a reduced racemizationvelocity and celosianin II in addition an enhanced stability, possibly caused by intramolecular associationbetween the betanidin and the feruloyl moieties.


Phytochemistry | 1998

BETANIDIN FORMATION FROM DIHYDROXYPHENYLALANINE IN A MODEL ASSAY SYSTEM

Willibald Schliemann; Ulrike Steiner; Dieter Strack

Formation of betanidin, the aglycone of the red-violet betacyanins, has been demonstrated by a two-step model assay system. In the first step, dihydroxyphenylalanine (Dopa) was incubated with a Dopa dioxygenase preparation from Amanita muscaria, resulting in the formation of 4,5-seco-Dopa that spontaneously recyclized to betalamic acid. In the second step, a tyrosinase preparation from Portulaca grandiflora was added to the Dopa dioxygenase assay, resulting in Dopa oxidation followed by a spontaneous formation of cyclo-Dopa that, in turn, reacted spontaneously with betalamic acid to form betanidin. Thus, two enzymatic reactions, Dopa extradiol ring cleavage by the fungal enzyme and Dopa oxidation by the plant enzyme, initiate three spontaneous steps: the formation of cyclo-Dopa and betalamic acid and finally the condensation of these compounds to betanidin.


Phytochemistry | 2008

Accumulation of apocarotenoids in mycorrhizal roots of leek (Allium porrum)

Willibald Schliemann; Barbara Kolbe; Jürgen Schmidt; Manfred Nimtz; Victor Wray

Colonization of the roots of leek (Allium porrum L.) by the arbuscular mycorrhizal fungus Glomus intraradices induced the formation of apocarotenoids, whose accumulation has been studied over a period of 25 weeks. Whereas the increase in the levels of the dominating cyclohexenone derivatives resembles the enhancement of root length colonization, the content of mycorradicin derivatives remains relatively low throughout. Structural analysis of the cyclohexenone derivatives by mass spectrometry and NMR spectroscopy showed that they are mono- and diglycosides of 13-hydroxyblumenol C and blumenol C acylated with 3-hydroxy-3-methyl-glutaric and/or malonic acid. Along with the isolation of three known compounds five others are shown to be hitherto unknown members of the fast-growing family of mycorrhiza-induced cyclohexenone conjugates.

Collaboration


Dive into the Willibald Schliemann's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Victor Wray

Braunschweig University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas Fester

Helmholtz Centre for Environmental Research - UFZ

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge