Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martin Distel is active.

Publication


Featured researches published by Martin Distel.


Journal of Clinical Investigation | 2009

A zebrafish model of tauopathy allows in vivo imaging of neuronal cell death and drug evaluation

Dominik Paquet; Ratan Bhat; Astrid Sydow; Eva-Maria Mandelkow; Stefan Berg; Sven Hellberg; Johanna Fälting; Martin Distel; Reinhard W. Köster; Bettina Schmid; Christian Haass

Our aging society is confronted with a dramatic increase of patients suffering from tauopathies, which include Alzheimer disease and certain frontotemporal dementias. These disorders are characterized by typical neuropathological lesions including hyperphosphorylation and subsequent aggregation of TAU protein and neuronal cell death. Currently, no mechanism-based cures are available. We generated fluorescently labeled TAU transgenic zebrafish, which rapidly recapitulated key pathological features of tauopathies, including phosphorylation and conformational changes of human TAU protein, tangle formation, neuronal and behavioral disturbances, and cell death. Due to their optical transparency and small size, zebrafish larvae are well suited for both in vivo imaging and drug development. TAU-induced neuronal cell death was imaged by time-lapse microscopy in vivo. Furthermore, we used this zebrafish model to identify compounds targeting the TAU kinase glycogen synthase kinase 3beta (GSK3beta). We identified a newly developed highly active GSK3beta inhibitor, AR-534, by rational drug design. AR-534 reduced TAU phosphorylation in TAU transgenic zebrafish. This transgenic zebrafish model may become a valuable tool for further studies of the neuropathology of dementia.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Optimized Gal4 genetics for permanent gene expression mapping in zebrafish

Martin Distel; Mario F. Wullimann; Reinhard W. Köster

Combinatorial genetics for conditional transgene activation allows studying gene function with temporal and tissue specific control like the Gal4-UAS system, which has enabled sophisticated genetic studies in Drosophila. Recently this system was adapted for zebrafish and promising applications have been introduced. Here, we report a systematic optimization of zebrafish Gal4-UAS genetics by establishing an optimized Gal4-activator (KalTA4). We provide quantitative data for KalTA4-mediated transgene activation in dependence of UAS copy numbers to allow for studying dosage effects of transgene expression. Employing a Tol2 transposon-mediated KalTA4 enhancer trap screen biased for central nervous system expression, we present a collection of self-reporting red fluorescent KalTA4 activator strains. These strains reliably transactivate UAS-dependent transgenes and can be rendered homozygous. Furthermore, we have characterized the transactivation kinetics of tissue-specific KalTA4 activation, which led to the development of a self-maintaining effector strain “Kaloop.” This strain relates transient KalTA4 expression during embryogenesis via a KalTA4-mediated autoregulatory mechanism to live adult structures. We demonstrate its use by showing that the secondary octaval nucleus in the adult hindbrain is likely derived from egr2b-expressing cells in rhombomere 5 during stages of early embryogenesis. These data demonstrate prolonged and maintained expression by Kalooping, a technique that can be used for permanent spatiotemporal genetic fate mapping and targeted transgene expression in zebrafish.


Journal of Cell Biology | 2010

The centrosome neither persistently leads migration nor determines the site of axonogenesis in migrating neurons in vivo

Martin Distel; Jennifer C. Hocking; Katrin Volkmann; Reinhard W. Köster

In vivo analysis of subcellular dynamics in the zebrafish cerebellum provides new insights into centrosome positioning during vertebrate brain differentiation.


PLOS ONE | 2010

Kita Driven Expression of Oncogenic HRAS Leads to Early Onset and Highly Penetrant Melanoma in Zebrafish

Cristina Santoriello; Elisa Gennaro; Viviana Anelli; Martin Distel; Amanda Kelly; Reinhard W. Köster; Adam Hurlstone; Marina Mione

Background Melanoma is the most aggressive and lethal form of skin cancer. Because of the increasing incidence and high lethality of melanoma, animal models for continuously observing melanoma formation and progression as well as for testing pharmacological agents are needed. Methodology and Principal Findings Using the combinatorial Gal4 –UAS system, we have developed a zebrafish transgenic line that expresses oncogenic HRAS under the kita promoter. Already at 3 days transgenic kita-GFP-RAS larvae show a hyper-pigmentation phenotype as earliest evidence of abnormal melanocyte growth. By 2–4 weeks, masses of transformed melanocytes form in the tail stalk of the majority of kita-GFP-RAS transgenic fish. The adult tumors evident between 1–3 months of age faithfully reproduce the immunological, histological and molecular phenotypes of human melanoma, but on a condensed time-line. Furthermore, they show transplantability, dependence on mitfa expression and do not require additional mutations in tumor suppressors. In contrast to kita expressing melanocyte progenitors that efficiently develop melanoma, mitfa expressing progenitors in a second Gal4-driver line were 4 times less efficient in developing melanoma during the three months observation period. Conclusions and Significance This indicates that zebrafish kita promoter is a powerful tool for driving oncogene expression in the right cells and at the right level to induce early onset melanoma in the presence of tumor suppressors. Thus our zebrafish model provides a link between kita expressing melanocyte progenitors and melanoma and offers the advantage of a larval phenotype suitable for large scale drug and genetic modifier screens.


The EMBO Journal | 2014

Discrete Notch signaling requirements in the specification of hematopoietic stem cells

Albert D. Kim; Chase Melick; Wilson Clements; David L. Stachura; Martin Distel; Daniela Panáková; Calum A. MacRae; Lindsey Mork; J. Gage Crump; David Traver

Hematopoietic stem cells (HSCs) require multiple molecular inputs for proper specification, including activity of the Notch signaling pathway. A requirement for the Notch1 and dispensability of the Notch2 receptor has been demonstrated in mice, but the role of the remaining Notch receptors has not been investigated. Here, we demonstrate that three of the four Notch receptors are independently required for the specification of HSCs in the zebrafish. The orthologues of the murine Notch1 receptor, Notch1a and Notch1b, are each required intrinsically to fate HSCs, just prior to their emergence from aortic hemogenic endothelium. By contrast, the Notch3 receptor is required earlier within the developing somite to regulate HSC emergence in a non‐cell‐autonomous manner. Epistatic analyses demonstrate that Notch3 function lies downstream of Wnt16, which is required for HSC specification through its regulation of two Notch ligands, dlc and dld. Collectively, these findings demonstrate for the first time that multiple Notch signaling inputs are required to specify HSCs and that Notch3 performs a novel role within the somite to regulate the neighboring precursors of hemogenic endothelium.


Frontiers in Neuroanatomy | 2011

The long adventurous journey of rhombic lip cells in jawed vertebrates: a comparative developmental analysis.

Mario F. Wullimann; Thomas Mueller; Martin Distel; Andreas Babaryka; Benedikt Grothe; Reinhard W. Köster

This review summarizes vertebrate rhombic lip and early cerebellar development covering classic approaches up to modern developmental genetics which identifies the relevant differential gene expression domains and their progeny. Most of this information is derived from amniotes. However, progress in anamniotes, particularly in the zebrafish, has recently been made. The current picture suggests that rhombic lip and cerebellar development in jawed vertebrates (gnathostomes) share many characteristics. Regarding cerebellar development, these include a ptf1a expressing ventral cerebellar proliferation (VCP) giving rise to Purkinje cells and other inhibitory cerebellar cell types, and an atoh1 expressing upper rhombic lip giving rise to an external granular layer (EGL, i.e., excitatory granule cells) and an early ventral migration into the anterior rhombencephalon (cholinergic nuclei). As for the lower rhombic lip (LRL), gnathostome commonalities likely include the formation of precerebellar nuclei (mossy fiber origins) and partially primary auditory nuclei (likely convergently evolved) from the atoh1 expressing dorsal zone. The fate of the ptf1a expressing ventral LRL zone which gives rise to (excitatory cells of) the inferior olive (climbing fiber origin) and (inhibitory cells of ) cochlear nuclei in amniotes, has not been determined in anamniotes. Special for the zebrafish in comparison to amniotes is the predominant origin of anamniote excitatory deep cerebellar nuclei homologs (i.e., eurydendroid cells) from ptf1a expressing VCP cells, the sequential activity of various atoh1 paralogs and the incomplete coverage of the subpial cerebellar plate with proliferative EGL cells. Nevertheless, the conclusion that a rhombic lip and its major derivatives evolved with gnathostome vertebrates only and are thus not an ancestral craniate character complex is supported by the absence of a cerebellum (and likely absence of its afferent and efferent nuclei) in jawless fishes


Development | 2015

Gata2b is a restricted early regulator of hemogenic endothelium in the zebrafish embryo

Emerald Butko; Martin Distel; Claire Pouget; Bart Weijts; Isao Kobayashi; Kevin Ng; Christian Mosimann; Fabienne E. Poulain; Adam D. McPherson; Chih-Wen Ni; David L. Stachura; Natasha Del Cid; Raquel Espín-Palazón; Nathan D. Lawson; Richard I. Dorsky; Wilson Clements; David Traver

The adult blood system is established by hematopoietic stem cells (HSCs), which arise during development from an endothelial-to-hematopoietic transition of cells comprising the floor of the dorsal aorta. Expression of aortic runx1 has served as an early marker of HSC commitment in the zebrafish embryo, but recent studies have suggested that HSC specification begins during the convergence of posterior lateral plate mesoderm (PLM), well before aorta formation and runx1 transcription. Further understanding of the earliest stages of HSC specification necessitates an earlier marker of hemogenic endothelium. Studies in mice have suggested that GATA2 might function at early stages within hemogenic endothelium. Two orthologs of Gata2 exist in zebrafish: gata2a and gata2b. Here, we report that gata2b expression initiates during the convergence of PLM, becoming restricted to emerging HSCs. We observe Notch-dependent gata2b expression within the hemogenic subcompartment of the dorsal aorta that is in turn required to initiate runx1 expression. Our results indicate that Gata2b functions within hemogenic endothelium from an early stage, whereas Gata2a functions more broadly throughout the vascular system. Highlighted article: Gata2b marks a distinct population of embryonic endothelial cells that gives rise to hematopoietic stem cells and is required for the hemogenic potential of these cells.


Zebrafish | 2009

Global repression of cancer gene expression in a zebrafish model of melanoma is linked to epigenetic regulation

Viviana Anelli; Cristina Santoriello; Martin Distel; Reinhard W. Köster; Francesca D. Ciccarelli; Marina Mione

We have established a model of melanoma progression in zebrafish through the generation of transgenic lines specifically expressing oncogenic human HRAS in the melanocytic lineage. In these tumors we have carried out quantitative expression analysis of several putative cancer genes, from known and predicted cancer gene lists. In particular, we analyzed 39 out of 101 putative cancer genes identified with a bioinformatics approach and selected for the low frequency of duplication and the high connectivity in protein networks. Data obtained by real-time polymerase chain reaction analysis from zebrafish melanoma tissue shows that the expression of many cancer genes is downregulated in zebrafish melanomas, whereas only cell cycle genes are upregulated. To understand whether this trend is due to global repression of gene expression associated to a repressive chromatin state, we investigated whether changes of histone methylation were detectable in our melanoma model. We found substantial differences in the levels of H3K9me3, H4K20me2, H3K27me3, H3K4me3, and H3R2me2a immunostaining in melanoma tissue when compared with normal skin. Thus our analysis suggests that in our model, like in human melanoma, important changes occur to the methylation status of histones. Although the outcome of these changes is still unknown, they could be responsible for the global repression of gene expression through epigenetic regulation shown in this study.


Physics in Medicine and Biology | 2012

Non-invasive whole-body imaging of adult zebrafish with optoacoustic tomography.

Rui Ma; Martin Distel; X. Luís Deán-Ben; Vasilis Ntziachristos; Daniel Razansky

Zebrafish has emerged as an excellent vertebrate model organism for studies of evolution, development and disease. Due to its external development and optical transparency in embryonic stages, zebrafish offers a major advantage over other vertebrate model organisms by being amenable for microscopic studies of biological processes within their natural environment directly in the living organism. However, commonly used zebrafish strains lose their transparency within their first two weeks of development and thus are no longer accessible for optical imaging approaches at juvenile or adult stages. In this study we successfully apply optoacoustic imaging for non-invasive three-dimensional imaging of adult zebrafish. Since optoacoustics does not necessarily require labeling, but can instead rely on the intrinsic tissue contrast, this imaging method has the potential to become a versatile tool for developmental studies from juvenile to adult stages in the intact zebrafish.


Development | 2009

Lunatic fringe promotes the lateral inhibition of neurogenesis.

Nikolas Nikolaou; Tomomi Watanabe-Asaka; Sebastian S. Gerety; Martin Distel; Reinhard W. Köster; David G. Wilkinson

Previous studies have identified roles of the modulation of Notch activation by Fringe homologues in boundary formation and in regulating the differentiation of vertebrate thymocytes and Drosophila glial cells. We have investigated the role of Lunatic fringe (Lfng) expression during neurogenesis in the vertebrate neural tube. We find that in the zebrafish hindbrain, Lfng is expressed by progenitors in neurogenic regions and downregulated in cells that have initiated neuronal differentiation. Lfng is required cell autonomously in neural epithelial cells to limit the amount of neurogenesis and to maintain progenitors. By contrast, Lfng is not required for the role of Notch in interneuronal fate choice, which we show is mediated by Notch1a. The expression of Lfng does not require Notch activity, but rather is regulated downstream of proneural genes that are widely expressed by neural progenitors. These findings suggest that Lfng acts in a feedback loop downstream of proneural genes, which, by promoting Notch activation, maintains the sensitivity of progenitors to lateral inhibition and thus limits further proneural upregulation.

Collaboration


Dive into the Martin Distel's collaboration.

Top Co-Authors

Avatar

Reinhard W. Köster

Braunschweig University of Technology

View shared research outputs
Top Co-Authors

Avatar

Jennifer C. Hocking

Braunschweig University of Technology

View shared research outputs
Top Co-Authors

Avatar

Marina Mione

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Traver

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wilson Clements

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Albert D. Kim

University of California

View shared research outputs
Top Co-Authors

Avatar

Chase Melick

University of California

View shared research outputs
Top Co-Authors

Avatar

Steven L. Walker

Georgia Regents University

View shared research outputs
Researchain Logo
Decentralizing Knowledge