Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wim J.A. Boersma is active.

Publication


Featured researches published by Wim J.A. Boersma.


Vaccine | 2000

STRAIN-DEPENDENT INDUCTION OF CYTOKINE PROFILES IN THE GUT BY ORALLY ADMINISTERED LACTOBACILLUS STRAINS

Catharina B.M. Maassen; Conny van Holten-Neelen; Fräncis Balk; Marie-Joan Heijne den Bak-Glashouwer; Rob J. Leer; Jon D. Laman; Wim J.A. Boersma; Eric Claassen

Different Lactobacillus strains are frequently used in consumer food products. In addition, recombinant lactobacilli which contain novel expression vectors can now be used in immunotherapeutic applications such as oral vaccination strategies and in T cell tolerance induction approaches for autoimmune disease. Both for food and clinical applications of lactobacilli, proper selection of wild type strains is crucial. For that purpose, eight different common Lactobacillus strains were analysed with respect to mucosal induction of pro- and anti-inflammatory cytokines, IgA-producing plasma cells in the gut, as well as systemic antibody responses against a parenterally administered antigen. Immunohistochemical analysis of cytokine-producing cells in the gut villi showed no significant induction of the cytokines IL-1alpha, IFN-gamma, IL-4 or IL-10 after oral administration of wild type Lactobacillus strains. In contrast, oral administration of L. reuteri and L. brevis induced expression of the proinflammatory/Th1 cytokines TNF-alpha, IL-2 and/or IL-1beta. Oral administration of these two strains and L. fermentum also significantly enhanced the IgG response against parenterally administered haptenated chicken gamma globulin (TNP-CGG). The five other strains did not show this adjuvanticity. L. reuteri induced relatively high levels of IgG2a compared to L. murines, a nonadjuving Lactobacillus strain. These findings imply that different Lactobacillus strains induce distinct mucosal cytokine profiles and possess differential intrinsic adjuvanticity. This suggests that rational Lactobacillus strain selection provides a strategy to influence cytokine expression and thereby influence immune responses.


Journal of Biotechnology | 1996

The potential of Lactobacillus as a carrier for oral immunization: Development and preliminary characterization of vector systems for targeted delivery of antigens

Peter H. Pouwels; Rob J. Leer; Wim J.A. Boersma

Oral administration of lactobacilli evokes mucosal and systemic immune responses against epitopes associated with these organisms (Gerritse et al., 1990, 1991). The adjuvant function of different Lactobacillus species was investigated under the conditions of intraperitoneal (i.p.) injection or oral administration. After i.p. injection of trinitrophenylated chicken gamma-globulin, high DTH responses were observed with Lactobacillus casei and Lactobacillus plantarum, but low responses with Lactobacillus fermentum and Lactobacillus delbrueckii subsp. bulgaricus. In different experimental model systems L. casei and L. plantarum consistently showed significant adjuvanticity. A series of expression and expression-secretion vectors containing the strong constitutive promoter of the L. casei L-ldh gene or the regulatable promoter of the Lactobacillus amylovorus amy gene (Pouwels and Leer, 1995) was used for the intracellular, extracellular and surface-bound expression of an influenza virus antigenic determinant fused to Escherichia coli beta-glucuronidase. Intracellular expression of the fusion protein amounted to 1-2% of total soluble protein. Lactobacilli synthesizing the fusion protein intracellularly evoked an oral immune response after subcutaneous priming.


British Poultry Science | 2004

Immunomodulation by probiotic lactobacilli in layer- and meat-type chickens

Marjorie E. Koenen; J. Kramer; R. van der Hulst; L. Heres; Suzan H.M. Jeurissen; Wim J.A. Boersma

1. The aim of the experiments was to evaluate whether selected probiotic lactobacillus strains have different immunomodulating effects in layer- and meat-type strain chickens. 2. Humoral and cellular specific and non-specific immune responses were studied by experiments on cellular proliferation, entry and survival of Salmonella bacteria in gut and spleen leukocytes, immunoglobulin isotypes and specific immunoglobulin titres. 3. The effects of two different feeding regimes (short and continuous feeding) and doses for administration of lactobacilli were studied. 4. The lactobacillus strains that were evaluated showed modulating effects on the immune system of layer- and meat-type chickens. 5. In meat-type strain chickens the lactobacilli had a stimulating effect when the chickens were young (up to 3 weeks) and the dose was relatively high, whereas in layer-type chickens a lower effective dose and discontinuous administration was also effective. 6. Immunoprobiotic lactobacilli can have a positive effect on humoral and cellular immune responses in layer- and meat-type strain chickens, but the lactobacillus strain to be used, the age of the animals and effective dose of lactobacilli to be administered need to be optimised.


Vaccine | 1999

Instruments for oral disease-intervention strategies: Recombinant Lactobacillus casei expressing tetanus toxin fragment C for vaccination or myelin proteins for oral tolerance induction in multiple sclerosis

Catharina B.M. Maassen; Jon D. Laman; M.J Heijne den Bak-Glashouwer; F.J. Tielen; J.C.P.A van Holten-Neelen; L Hoogteijling; C Antonissen; Rob J. Leer; Peter H. Pouwels; Wim J.A. Boersma; D.M. Shaw

Lactobacillus strains possess properties that make them attractive candidates as vehicles for oral administration of therapeutics. In this report we describe the construction and analysis of recombinant Lactobacillus casei applicable in oral vaccination against an infectious disease (tetanus) and in oral tolerance induction for intervention in an autoimmune disease, multiple sclerosis. Recombinant L. casei which express surface-anchored tetanus toxin fragment C (TTFC) were generated. Quantitative analysis by flow cytometry demonstrated a high level of cell wall-bound expression of TTFC and immunogenicity was demonstrated by parenteral immunization with whole cell extracts of the recombinants. A series of expression vectors was constructed to secrete human myelin basic protein (hMBP) or hMBP as a fusion protein with beta-glucuronidase from Escherichia coli. These heterologous products produced by L. casei were detected in the growth medium and parenteral immunization with this medium evoked antibodies against hMBP, confirming that secretion indeed had occurred. Based on the different localization of the heterologous proteins, lactobacilli expressing surface-anchored TTFC are ideally suited for the induction of antibody responses, whereas lactobacilli that secrete myelin proteins can be used for the induction of peripheral T-cell tolerance. In conclusion, the specific technology described here allows the construction of a wide array of safe live recombinant lactobacilli which may prove to be useful in oral intervention strategies for the prevention of infectious diseases or treatment of autoimmune diseases.


Vaccine | 2001

Oral immunisation of naive and primed animals with transgenic potato tubers expressing LT-B

Tosca G.M. Lauterslager; D.E.A Florack; T.J van der Wal; J.W Molthoff; Jan Langeveld; D Bosch; Wim J.A. Boersma; L.A.Th Hilgers

The efficacy of edible vaccines produced in potato tubers was examined in mice. Transgenic plants were developed by Agrobacterium tumefaciens-mediated transformation. The antigen selected was the non-toxic B subunit of the Escherichia coli enterotoxin (recLT-B). A synthetic gene coding for recLT-B was made and optimised for expression in potato tubers and accumulation in the endoplasmic reticulum. Introduction of this gene under control of the tuber-specific patatin promoter in potato plants resulted in the production of functional, i.e. Gm1-binding, recLT-B pentamers in tubers. Selected tubers containing about 13 microg of recLT-B per gram fresh weight were used for immunisation. Subcutaneous immunisation with an extract of recLT-B tubers yielded high antibody titres in serum that were similar to those obtained with bacterial recLT-B. The efficacy of oral administration of recLT-B tubers was determined by measuring mucosal and systemic immune responses in naive and primed mice. Animals were primed by subcutaneous injection of an extract of recLT-B tuber plus adjuvant. Naive and primed mice were fed 5 g of tubers ( approximately 65 microg of recLT-B) or were intubated intragastrically with 0.4 ml of tuber extract ( approximately 2 microg of recLT-B). In naive mice, feeding recLT-B tubers or intubation of tuber extract did not induce detectable anti-LT antibody titres. In primed animals, however, oral immunisation resulted in significant anti-LT IgA antibody responses in serum and faeces. Intragastric intubation of tuber extract revealed higher responses than feeding of tubers. These results indicate clearly that functional recLT-B can be produced in potato tubers, that this recombinant protein is immunogenic and that oral administration thereof elicits both systemic and local IgA responses in parentally primed, but not naive, animals.


International Journal for Parasitology | 1999

Use of a pre-selected epitope of cathepsin-L1 in a highly specific peptide-based immunoassay for the diagnosis of Fasciola hepatica infections in cattle.

J.B.W.J. Cornelissen; C.P.H. Gaasenbeek; Wim J.A. Boersma; F.H.M. Borgsteede; F. J. Van Milligen

A peptide-based indirect ELISA to detect cattle antibodies against Fasciola hepatica was developed and evaluated for its sensitivity and specificity. An immunogenic antigen released in vitro by F. hepatica was purified. After purification the sequence of the first 20 N-terminal aa of this protein showed considerable homology with cathepsin L-like proteinase. Based on its homology with cathepsin-L1, we further focused on this protein for diagnostic purpose. Predicted B-cell epitopes of cathepsin-L1 were synthesised as single synthetic peptides and tested with respect to their diagnostic potential. An indirect ELISA based on one of these peptides was (i) evaluated further and (ii) compared to the potential of an indirect ELISA with excretion/secretion antigens from adult F. hepatica, or (iii) purified cathepsin-L1. Specificity and sensitivity of the three ELISAs were assessed using sera from calves experimentally infected with pure isolates of Dictyocaulus viviparus, Ostertagia ostertagi, Cooperia oncophora, Nematodirus helvetianus, Schistosoma mattheei, Ascaris suum, Taenia saginata or F. hepatica, respectively, and sera from parasite-naive calves. In addition, sera were analysed from calves naturally infected with F. hepatica. The sensitivities of all three ELISAs were also very high, 98.9% (i), 100% (ii) and 100% (iii). The specificity of the peptide ELISA was very high, 99.8%, whereas specificities of the ES antigens and cathepsin-L1 ELISAs were only 82.8% and 94.6%. In experimentally infected cattle, F. hepatica-specific antibodies were first detected between days 21 and 28 p.i. with all three ELISAs, and the antibody levels persisted in the peptide ELISA until day 183 p.i. All sera from naturally infected calves were positive in the peptide ELISA. These results demonstrate that the peptide-based F. hepatica ELISA is a useful method for detecting antibodies in the sera from cattle infected with F. hepatica. This type of immunodiagnostic will therefore contribute to more accurate diagnosis and to timely curative treatment of animals.


Veterinary Immunology and Immunopathology | 1998

Effect of vaccination route and composition of DNA vaccine on the induction of protective immunity against pseudorabies infection in pigs

E.M.A. van Rooij; Bart L. Haagmans; Y.E. de Visser; M.G.M. de Bruin; Wim J.A. Boersma; A.T.J. Bianchi

Vaccination with naked DNA may be an alternative to conventional vaccines because it combines the efficacy of attenuated vaccines with the biological safety of inactivated vaccines. We recently showed that the vaccination with naked DNA coding for the immunorelevant glycoprotein D (gD) of pseudorabies virus (PRV) induced both antibody and cell-mediated immunity in pigs and provided protection against challenge infection. To determine whether the efficacy of the naked DNA vaccination against PRV could be improved, we compared three sets of variables. First, the efficacy of the naked DNA vaccine coding only for the immunorelevant gD was compared with a cocktail vaccine containing additional plasmids coding for two other immunorelevant glycoproteins, gB and gC. Second, the intramuscular route of vaccination was compared with the intradermal route. Third, the commonly used needle method of inoculation was compared with the needleless Pigjet injector method. Five groups of five pigs were vaccinated three times at 4-weeks intervals and challenged with the virulent NIA-3 strain of PRV 6 weeks after the last vaccination. Results showed that although the cocktail vaccine induced stronger cell-mediated immune responses than the vaccine containing only gD plasmid, both vaccines protected pigs equally well against challenge infection. Intradermal inoculation with a needle induced significantly stronger antibody and cell-mediated immune responses and better protection against challenge infection than intramuscular inoculation. Our data show that the route of administering DNA vaccines in pigs is important for an optimal induction of protective immunity.


Veterinary Quarterly | 1998

Orally administered lactobacillus strains differentially affect the direction and efficacy of the immune response

Catharina B.M. Maassen; J.C.A.M. van Holten; F. Balk; M.J. Heijne den Bak-Glashouwer; Rob J. Leer; Jon D. Laman; Wim J.A. Boersma; Eric Claassen

In mice, strain dependent cytokine production profiles are induced after oral administration of Lactobacillus. Such a cytokine profile seems to determine the direction and efficacy of the humoral response. In SJL mice lactobacilli are able to enhance or inhibit the development of disease after induction of experimental autoimmune encephalomyelitis (EAE). Immuno-histochemical analysis of cytokine profiles showed that differential modulation is obtained dependent on the Lactobacillus strain applied. Serum antibody responses to i.p. immunisation with chicken gamma globulin in BALB/c mice are also modulated by oral application of Lactobacillus. Lactobacilli are now being developed as safe live antigen carriers for application in vaccine technology, but also for the excretion of autoantigens in order to induce tolerance. The findings of this study imply that by proper strain selection the direction of the response can be influenced by the induction of a specific cytokine profile.


Developmental and Comparative Immunology | 1999

Development of the natural response of immunoglobulin secreting cells in the pig as a function of organ, age and housing

A.T.J. Bianchi; Jan-Willem Scholten; Bernie H.W.M Moonen Leusen; Wim J.A. Boersma

We analysed the development of the natural immunoglobulin-secreting cell (Ig-SC) response in systemic- and mucosal-lymphoid tissues of specified pathogen free pigs between 1 and 40 weeks of age. As antigen exposure may influence the development of the Ig-SC repertoire we also compared the frequencies of Ig-SC in various lymphoid tissues of 40 weeks old specified pathogen free pigs and conventional pigs. A procedure to isolate lamina propria cells from porcine intestine was adapted for this study. The frequencies of IgM-, IgG-, and IgA-secreting (spot forming) cells were determined with a reversed enzyme linked immunospot assay, which was also adapted for detection of Ig-SC in pigs. The Ig-SC frequencies were calculated as percentage of the mononuclear leukocytes isolated from the various organs. The observations till 40 weeks of age were as follows: Splenic IgM-SC predominated at all ages and reached a plateau of 0.1-0.2% of the mononuclear leukocytes already at 4 weeks of age. The IgM-SC of mesenteric lymph node (MLN) predominated up till 12 weeks of age and reached an optimum of 0.15% reached at 4 weeks of age. The frequencies of IgG-SC of spleen and MLN had dips around 4 weeks of age and increased thereafter till 40 weeks of age (spleen 0.025%, MLN 0.05% at 40 weeks of age). The frequencies of IgA-SC were low in the spleen (< or =0.003%) and moderate in the MLN (0.01-0.02%) at all ages tested. In peripheral lymph node (PLN) and bone marrow (BM), the frequencies of IgM-SC (0.03-0.05%) were much lower than in the spleen. The IgG-SC frequencies of BM and MLN also had dips around 4 weeks of age and increased thereafter. The IgG-SC frequency of BM reached a plateau at 12 weeks of age (0.15%) and for PLN the highest frequency was observed at 40 weeks of age (0.05%). The frequencies of IgA-SC were low in BM and PLN (<0.003%). High frequencies of IgA-SC were observed in mucosa associated tissue like Peyers patches (PP) and intestinal lamina propria (till 20% of the mononuclear leukocytes in intestinal lamina propria of 12-40 weeks of age). IgM and IgA are both important isotypes in mucosal lymphoid organs in the pig. The shift from IgM to IgAas predominant, mucosal isotype was first observed in duodenum and jejunum (12 weeks) and later in ileum (40 weeks). The influence of ageing on the frequency of Ig-SC in PP was only observed in jejunal PP. whereas in ileal PP the frequencies of Ig-SC did not vary over time. We combined our data about the frequencies of IgM-, IgG-, and IgA-SC in various organs with data obtained by others about the distribution of lymphocytes over porcine lymphoid organs at about 12 weeks of age. Based on these calculations we concluded that the small intestine, with more than 80% of all Ig-SC, is fair most the major site of Ig production in the pig. We also concluded that the small intestine is the major site of IgA and IgM production cells in the pig. Although IgA becomes predominant along the intestine, the results demonstrated that in the pig IgM is more a mucosal isotype compared with other species. With 40% of all IgG-SC the porcine BM appeared to be the major site of IgG production. Unexpected results were obtained for IgG-SC in the systemic lymphoid organs. In these organs the frequencies of IgG-SC dropped firstly from 1 to 4 weeks of age and steadily increased thereafter till 40 weeks of age. This observation is discussed in relation to the possibility that systemic IgG-SC at one week of age were passively acquired from maternal colostrum. The influence of housing/antigenic load at 40 weeks of age was mainly expressed by an increase (2-8x) of the frequency of IgG-SC in spleen, PLN, BM, and intestinal lamina propria, whereas the typical mucosal IgA-SC frequencies in the lamina propria were hardly affected.


Veterinary Immunology and Immunopathology | 2000

A DNA vaccine coding for glycoprotein B of pseudorabies virus induces cell-mediated immunity in pigs and reduces virus excretion early after infection.

E.M.A. van Rooij; Bart L. Haagmans; Harrie L. Glansbeek; Y.E. de Visser; M.G.M. de Bruin; Wim J.A. Boersma; A.T.J. Bianchi

Glycoproteins B (gB), gC and gD of pseudorabies virus (PRV) have been implicated as important antigens in protective immunity against PRV infection. As cell-mediated immunity plays a major role in this protective immunity, we determined the significance of these glycoproteins in the actual induction of cell-mediated immunity. We vaccinated pigs with plasmid DNA constructs coding for gB, gC or gD and challenged them with the virulent NIA-3 strain of pseudorabies virus. Vaccination with plasmid DNA coding for gB induced the strongest cell-mediated immune responses including cytotoxic T cell responses, whereas plasmid DNA coding for gD induced the strongest virus neutralising antibody responses. Interestingly, vaccination with gB-DNA reduced virus excretion early after challenge infection while vaccination with gC-DNA or gD-DNA did not.This is the first study to demonstrate that DNA vaccination induces cytotoxic T cell responses in pigs and that cell-mediated immunity induced by vaccination with gB-DNA is important for the reduction of virus excretion early after challenge infection.

Collaboration


Dive into the Wim J.A. Boersma's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

A.T.J. Bianchi

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Jon D. Laman

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar

Bart L. Haagmans

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. de Groot

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

J.B.W.J. Cornelissen

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Rob J. Leer

University of Amsterdam

View shared research outputs
Top Co-Authors

Avatar

M.M. Harmsen

Wageningen University and Research Centre

View shared research outputs
Researchain Logo
Decentralizing Knowledge