Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wim Jiskoot is active.

Publication


Featured researches published by Wim Jiskoot.


Pharmaceutical Research | 2008

Extrinsic Fluorescent Dyes as Tools for Protein Characterization

Andrea Hawe; Marc Sutter; Wim Jiskoot

Noncovalent, extrinsic fluorescent dyes are applied in various fields of protein analysis, e.g. to characterize folding intermediates, measure surface hydrophobicity, and detect aggregation or fibrillation. The main underlying mechanisms, which explain the fluorescence properties of many extrinsic dyes, are solvent relaxation processes and (twisted) intramolecular charge transfer reactions, which are affected by the environment and by interactions of the dyes with proteins. In recent time, the use of extrinsic fluorescent dyes such as ANS, Bis-ANS, Nile Red, Thioflavin T and others has increased, because of their versatility, sensitivity and suitability for high-throughput screening. The intention of this review is to give an overview of available extrinsic dyes, explain their spectral properties, and show illustrative examples of their various applications in protein characterization.


Pharmaceutical Research | 2000

Protein Instability in Poly(Lactic-co-Glycolic Acid) Microparticles

Marco van de Weert; Wim E. Hennink; Wim Jiskoot

In this review the current knowledge of protein degradation during preparation, storage and release from poly(lactic-co-glycolic acid) (PLGA) microparticles is described, as well as stabilization approaches. Although we have focussed on PLGA microparticles, the degradation processes and mechanisms described here are valid for many other polymeric release systems. Optimized process conditions as well as stabilizing excipients need to be used to counteract several stress factors that compromise the integrity of protein structure during preparation, storage, and release. The use of various stabilization approaches has rendered some success in increasing protein stability, but, still, full preservation of the native protein structure remains a major challenge in the formulation of protein-loaded PLGA microparticles.


Pharmaceutical Research | 2004

Structure-immunogenicity relationships of therapeutic proteins

Suzanne Hermeling; Daan J.A. Crommelin; Huub Schellekens; Wim Jiskoot

As more recombinant human proteins become available on the market, the incidence of immunogenicity problems is rising. The antibodies formed against a therapeutic protein can result in serious clinical effects, such as loss of efficacy and neutralization of the endogenous protein with essential biological functions. Here we review the literature on the relations between the immunogenicity of the therapeutic proteins and their structural properties. The mechanisms by which protein therapeutics can induce antibodies as well as the models used to study immunogenicity are discussed. Examples of how the chemical structure (including amino acid sequence, glycosylation, and pegylation) can influence the incidence and level of antibody formation are given. Moreover, it is shown that physical degradation (especially aggregation) of the proteins as well as chemical decomposition (e.g., oxidation) may enhance the immune response. To what extent the presence of degradation products in protein formulations influences their immunogenicity still needs further investigation. Immunization of transgenic animals, tolerant for the human protein, with well-defined, artificially prepared degradation products of therapeutic proteins may shed more light on the structure-immunogenicity relationships of recombinant human proteins.


Journal of Pharmaceutical Sciences | 2009

Overlooking Subvisible Particles in Therapeutic Protein Products: Gaps That May Compromise Product Quality

John F. Carpenter; Theodore W. Randolph; Wim Jiskoot; Daan J.A. Crommelin; C. Russell Middaugh; Gerhard Winter; Ying-Xin Fan; Susan Kirshner; Daniela Verthelyi; Steven Kozlowski; Kathleen A. Clouse; Patrick G. Swann; Amy S. Rosenberg; Barry Cherney

Therapeutic protein products provide unique and effective treatments for numerous human diseases and medical conditions. In many cases, these treatments are used chronically to slow disease progression, reduce morbidity and/or to replace essential proteins that are not produced endogenously in patients. Therefore, any factor that reduces or eliminates the effectiveness of the treatment can lead to patient suffering and even death. One means by which efficacy of therapeutic proteins can be compromised is by an immune response, resulting in antibody-mediated neutralization of the protein’s activity or alterations in bioavailability.1,2 For example, in the case of treatment of hemophilia A, neutralizing antibodies to Factor VIII can cause life-threatening bleeding episodes, resulting in significant morbidity and necessitating treatment with a prolonged course of a tolerance-inducing therapy to reverse immunity.3,4 In other cases, drug-induced antibodies to a therapeutic version of an endogenous protein can cross-react with and neutralize the patient’s endogenous protein. If the endogenous protein serves a non-redundant biological function, such an immune response can have devastating results. For example, pure red cell aplasia can result from neutralizing antibodies to epoetin alpha. 1,2 It is well established that protein aggregates in therapeutic protein products can enhance immunogenicity2, and such an effect is therefore an important risk factor to consider when assessing product quality. The purpose of this commentary is to accomplish the following: provide brief summaries on the factors affecting protein aggregation and the key aspects of protein aggregates that are associated with immunogenicity; emphasize the current scientific gaps in understanding and analytical limitations for quantitation of species of large protein aggregates that are referred to as subvisible particles, with specific consideration of those particles 0.1–10 μm in size; offer a rationale for why these gaps may compromise the safety and/or efficacy of a product; provide scientifically sound, risked based recommendations/conclusions for assessment and control of such aggregate species. Causes of Protein Aggregation Proteins usually aggregate from partially unfolded molecules, which can be part of the native state ensemble of molecules.5 Even though product formulations are developed to maximize and maintain the fraction of the protein molecules present in the native state, significant amounts of aggregates can form, especially over pharmaceutically-relevant time scales and under stress conditions. For example, exposure to interfaces (e.g., air-liquid and solid-liquid), light, temperature fluctuations or minor impurities can induce aggregation. Such exposure can occur during processing steps, as well as in the final product container during storage, shipment and handling. Furthermore, protein particles (visible and subvisible) can be generated from protein alone or from heterogeneous nucleation on foreign micro- and nanoparticles that are shed, for example, from filling pumps or product container/closures.6–8 The levels and sizes of protein particles present in a given product can be changed by many factors relevant to commercial production of therapeutic proteins. Such factors include a change in the type of filling pump during scale-up to commercial manufacturing, changes in formulation or container/closure, and even unintentional changes in the manufacturing process such as alterations in filling pump mechanical parameters or other unforeseen factors.8,9 Thus, unless appropriate quality controls are in place for subvisible particles, a product that was safe and effective in clinical trials may unexpectedly cause adverse events in patients after commercialization. Effects of Aggregate Characteristics on Immunogenicity From work on fundamental aspects of immunology and vaccine development, it is known that large protein assemblies with repetitive arrays of antigens, in which the protein molecules have native conformation, are usually the most potent at inducing immune responses.2,10,11 Furthermore, efforts to develop more effective vaccines have shown that adsorbing antigenic proteins to nano- or microparticles comprised of other materials (e.g., colloidal aluminum salts or polystyrene) can greatly increase immunogenicity.12,13 Applying these lessons to therapeutic protein products, it has been argued that large aggregates containing protein molecules with native-like conformation pose the greatest risk of causing adverse immune responses in patients.2 Thus, for example, particles of therapeutic proteins formed by adsorption of protein molecules onto foreign micro- and nanoparticles might be particularly prone to cause immunogenicity. These particles contain numerous protein molecules, and in the two examples published to date, the adsorbed protein molecules were shown to retain their native conformations.6,8 Unfortunately, lacking are published studies that comprehensively investigate the range of parameters that could influence immunogenicity of aggregates. Because each protein may differ in aggregate formation and consequences, factors that need to be investigated include but are not limited to type, amount and size of aggregates, as well as protein conformation in aggregates, on a case by case basis. Of course, other factors, particularly pertaining to patient status and treatment protocol, are also critical in determining the propensity to generate immune responses. These include immune competence of the patients, route of administration, and dosing frequency and duration. Given the consequences of aggregate-induced immunogenicity in patients, it is important to understand these issues and to reduce the risk to product quality for every therapeutic protein product. Because the exact characteristics and levels of protein aggregates that lead to an enhanced immune response are unclear and may differ among proteins, it is not possible to predict, a priori, the in vivo effects of different sizes, types or quantities of aggregates for therapeutic protein products. In such situations, careful analysis of the relationship between clinical performance and the presence of protein aggregates in relevant clinical trial material may help in the design of suitable control strategies that ensure product quality. However, the validity and utility such correlations are only optimized when the full spectrum of protein aggregate species are thoroughly characterized by multiple and orthogonal techniques.


Journal of Bacteriology | 2007

ESAT-6 from Mycobacterium tuberculosis Dissociates from Its Putative Chaperone CFP-10 under Acidic Conditions and Exhibits Membrane-Lysing Activity

Marien I. de Jonge; Gérard Pehau-Arnaudet; Marjan M. Fretz; Felix Romain; Daria Bottai; Priscille Brodin; Nadine Honoré; Gilles Marchal; Wim Jiskoot; Patrick England; Stewart T. Cole; Roland Brosch

The 6-kDa early secreted antigenic target ESAT-6 and the 10-kDa culture filtrate protein CFP-10 of Mycobacterium tuberculosis are secreted by the ESX-1 system into the host cell and thereby contribute to pathogenicity. Although different studies performed at the organismal and cellular levels have helped to explain ESX-1-associated phenomena, not much is known about how ESAT-6 and CFP-10 contribute to pathogenesis at the molecular level. In this study we describe the interaction of both proteins with lipid bilayers, using biologically relevant liposomal preparations containing dimyristoylphosphatidylcholine (DMPC), dimyristoylphosphatidylglycerol, and cholesterol. Using flotation gradient centrifugation, we demonstrate that ESAT-6 showed strong association with liposomes, and in particular with preparations containing DMPC and cholesterol, whereas the interaction of CFP-10 with membranes appeared to be weaker and less specific. Most importantly, binding to the biomembranes no longer occurred when the proteins were present as a 1:1 ESAT-6.CFP-10 complex. However, lowering of the pH resulted in dissociation of the protein complex and subsequent protein-liposome interaction. Finally, cryoelectron microscopy revealed that ESAT-6 destabilized and lysed liposomes, whereas CFP-10 did not. In conclusion, we propose that one of the main features of ESAT-6 in the infection process of M. tuberculosis is the interaction with biomembranes that occurs after dissociation from its putative chaperone CFP-10 under acidic conditions typically encountered in the phagosome.


Pharmaceutical Research | 2011

Strategies for the assessment of protein aggregates in pharmaceutical biotech product development.

John den Engelsman; Patrick Garidel; Ronald Smulders; Hans Koll; Bryan Smith; Stefan Bassarab; Andreas Seidl; Otmar Hainzl; Wim Jiskoot

ABSTRACTWithin the European Immunogenicity Platform (EIP) (http://www.e-i-p.eu), the Protein Characterization Subcommittee (EIP-PCS) has been established to discuss and exchange experience of protein characterization in relation to unwanted immunogenicity. In this commentary, we, as representatives of EIP-PCS, review the current state of methods for analysis of protein aggregates. Moreover, we elaborate on why these methods should be used during product development and make recommendations to the biotech community with regard to strategies for their application during the development of protein therapeutics.


International Journal of Pharmaceutics | 2003

Shifting paradigms: biopharmaceuticals versus low molecular weight drugs

Daan J.A. Crommelin; Gert Storm; Ruud Verrijk; Leo de Leede; Wim Jiskoot; Wim E. Hennink

Biopharmaceuticals are pharmaceutical products consisting of (glyco)proteins. Nowadays a substantial part of the FDA-approved drugs belong to this class of drugs. Biopharmaceuticals deserve special attention as they have a number of characteristics that set them aside from low molecular weight drugs. Their activity depends on their complicated shape based on secondary, tertiary and (sometimes) quaternary structures. These structures cannot be fully defined with our present set of analytical techniques and approaches for potency testing. They often are the same as (or closely resemble) endogenous proteins. This means that in safety testing and clinical test programs questions have to be addressed regarding species specific responses, selection of dosing schedules and route of administration, and the possible occurrence of immunogenicity. As the conformational structure of a protein is easily disturbed, formulation and handling of biopharmaceuticals needs special attention in order to optimize the therapeutic effect and minimize adverse reaction, among which immune responses. The issue of biogenerics is gaining more and more interest and different critical elements in the development of biogenerics are touched upon. In conclusion, biopharmaceuticals cannot be characterized fully in terms of their structure like low molecular weight drugs. The performance of biopharmaceuticals relies on strict production protocols and close monitoring of their activity in the clinical situation.


European Journal of Pharmaceutical Sciences | 2009

Structural properties of monoclonal antibody aggregates induced by freeze-thawing and thermal stress.

Andrea Hawe; Julia Christina Kasper; Wolfgang Friess; Wim Jiskoot

Aggregation of monoclonal antibodies can be induced by freeze-thawing and elevated temperature, typical stress factors during development, production and storage. Our aim was to characterize structural properties of aggregates formed after freeze-thawing and thermal stressing of humanized monoclonal IgG(1) antibody (IgG). Formulations with 1.0mg/ml IgG in 100mM phosphate pH 7.2 were subjected to freeze-thawing and heating and characterized by spectroscopic techniques (UV-absorption, CD, ATR-FTIR and fluorescence), light obscuration, dynamic light scattering, SDS-PAGE, AF4 with UV and MALLS detection, and HP-SEC with UV and online fluorescent dye detection. Thermal stress led to an increased formation of dimers and soluble oligomers (HP-SEC, AF4). Aggregates smaller than 30nm were measured (DLS), next to slightly elevated particle levels in the mum range (light obscuration). Aggregates created by heating were in part covalently linked (SDS-PAGE) and made up of conformationally perturbed monomers (CD, ATR-FTIR, extrinsic dye fluorescence). Aggregation after freeze-thawing was manifested primarily in particle formation in the mum range. These aggregates were noncovalently linked (SDS-PAGE) and composed of native-like monomers, as obvious from CD, ATR-FTIR and extrinsic dye fluorescence spectroscopy. In conclusion, the complementary methods used in this study revealed that heating and freeze-thawing induced aggregates differ significantly in their physico-chemical characteristics.


Trends in Pharmacological Sciences | 2010

Immunological mechanism underlying the immune response to recombinant human protein therapeutics

Melody Sauerborn; Vera Brinks; Wim Jiskoot; Huub Schellekens

Recombinant human (rhu) protein therapeutics are powerful tools to treat several severe diseases such as multiple sclerosis and diabetes mellitus, among others. A major drawback of these proteins is the production of anti-drug antibodies (ADAs). In some cases, these ADAs have neutralizing capacity and can interfere with the efficacy and safety of the drug. Little is known about the immunological mechanisms underlying the unwanted immune response against human homolog protein therapeutics. This article aims to provide current insights into recent immunological developments and to link this with regard to production of ADAs. A particular focus is given to aggregates being present in a rhu protein formulation and their impact on the immune system, subsequently leading to breakage of tolerance and formation of ADAs. Aggregation is one of the key factors in immunogenicity and by reducing aggregation one can reduce immunogenicity and make drugs safer and more efficient.


Journal of Controlled Release | 2010

Administration routes affect the quality of immune responses: A cross-sectional evaluation of particulate antigen-delivery systems

Deepa Mohanan; Bram Slütter; Malou Henriksen-Lacey; Wim Jiskoot; Joke A. Bouwstra; Yvonne Perrie; Thomas M. Kündig; Bruno Gander; Pål Johansen

Particulate delivery systems such as liposomes and polymeric nano- and microparticles are attracting great interest for developing new vaccines. Materials and formulation properties essential for this purpose have been extensively studied, but relatively little is known about the influence of the administration route of such delivery systems on the type and strength of immune response elicited. Thus, the present study aimed at elucidating the influence on the immune response when of immunising mice by different routes, such as the subcutaneous, intradermal, intramuscular, and intralymphatic routes with ovalbumin-loaded liposomes, N-trimethyl chitosan (TMC) nanoparticles, and poly(lactide-co-glycolide) (PLGA) microparticles, all with and without specifically selected immune-response modifiers. The results showed that the route of administration caused only minor differences in inducing an antibody response of the IgG1 subclass, and any such differences were abolished upon booster immunisation with the various adjuvanted and non-adjuvanted delivery systems. In contrast, the administration route strongly affected both the kinetics and magnitude of the IgG2a response. A single intralymphatic administration of all evaluated delivery systems induced a robust IgG2a response, whereas subcutaneous administration failed to elicit a substantial IgG2a response even after boosting, except with the adjuvanted nanoparticles. The intradermal and intramuscular routes generated intermediate IgG2a titers. The benefit of the intralymphatic administration route for eliciting a Th1-type response was confirmed in terms of IFN-gamma production of isolated and re-stimulated splenocytes from animals previously immunised with adjuvanted and non-adjuvanted liposomes as well as with adjuvanted microparticles. Altogether the results show that the IgG2a associated with Th1-type immune responses are sensitive to the route of administration, whereas IgG1 response associated with Th2-type immune responses were relatively insensitive to the administration route of the particulate delivery systems. The route of administration should therefore be considered when planning and interpreting pre-clinical research or development on vaccine delivery systems.

Collaboration


Dive into the Wim Jiskoot's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ferry Ossendorp

Leiden University Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge