Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wissam Al-Saidi is active.

Publication


Featured researches published by Wissam Al-Saidi.


Nano Letters | 2012

Adsorption of polyvinylpyrrolidone on Ag surfaces: insight into a structure-directing agent.

Wissam Al-Saidi; Haijun Feng; Kristen A. Fichthorn

We use density functional theory to resolve the role of polyvinylpyrrolidone (PVP) in the shape-selective synthesis of Ag nanostructures. At the segment level, PVP binds more strongly to Ag(100) than Ag(111) because of a surface-sensitive balance between direct binding and van der Waals attraction. At the chain level, correlated segment binding leads to a strong preference for PVP bind to Ag(100). Our study underscores differences between small-molecule and polymeric structure-directing agents.


Journal of Chemical Physics | 2012

Coadsorption properties of CO2 and H2O on TiO2 rutile (110): a dispersion-corrected DFT study.

Dan C. Sorescu; Jun-Seok Lee; Wissam Al-Saidi; Kenneth D. Jordan

Adsorption and reactions of CO(2) in the presence of H(2)O and OH species on the TiO(2) rutile (110)-(1×1) surface were investigated using dispersion-corrected density functional theory and scanning tunneling microscopy. The coadsorbed H(2)O (OH) species slightly increase the CO(2) adsorption energies, primarily through formation of hydrogen bonds, and create new binding configurations that are not present on the anhydrous surface. Proton transfer reactions to CO(2) with formation of bicarbonate and carbonic acid species were investigated and found to have barriers in the range 6.1-12.8 kcal/mol, with reactions involving participation of two or more water molecules or OH groups having lower barriers than reactions involving a single adsorbed water molecule or OH group. The reactions to form the most stable adsorbed formate and bicarbonate species are exothermic relative to the unreacted adsorbed CO(2) and H(2)O (OH) species, with formation of the bicarbonate species being favored. These results are consistent with single crystal measurements which have identified formation of bicarbonate-type species following coadsorption of CO(2) and water on rutile (110).


Journal of Chemical Physics | 2008

Eliminating spin contamination in auxiliary-field quantum Monte Carlo: Realistic potential energy curve of F2

Wirawan Purwanto; Wissam Al-Saidi; Henry Krakauer; Shiwei Zhang

The use of an approximate reference state wave function mid R:Phi(r) in electronic many-body methods can break the spin symmetry of Born-Oppenheimer spin-independent Hamiltonians. This can result in significant errors, especially when bonds are stretched or broken. A simple spin-projection method is introduced for auxiliary-field quantum Monte Carlo (AFQMC) calculations, which yields spin-contamination-free results, even with a spin-contaminated mid R:Phi(r). The method is applied to the difficult F(2) molecule, which is unbound within unrestricted Hartree-Fock (UHF). With a UHF mid R:Phi(r), spin contamination causes large systematic errors and long equilibration times in AFQMC in the intermediate, bond-breaking region. The spin-projection method eliminates these problems and delivers an accurate potential energy curve from equilibrium to the dissociation limit using the UHF mid R:Phi(r). Realistic potential energy curves are obtained with a cc-pVQZ basis. The calculated spectroscopic constants are in excellent agreement with experiment.


Journal of Chemical Physics | 2007

Bond breaking with auxiliary-field quantum Monte Carlo

Wissam Al-Saidi; Shiwei Zhang; Henry Krakauer

Bond stretching mimics different levels of electron correlation and provides a challenging test bed for approximate many-body computational methods. Using the recently developed phaseless auxiliary-field quantum Monte Carlo (AF QMC) method, we examine bond stretching in the well-studied molecules BH and N(2) and in the H(50) chain. To control the sign/phase problem, the phaseless AF QMC method constrains the paths in the auxiliary-field path integrals with an approximate phase condition that depends on a trial wave function. With single Slater determinants from unrestricted Hartree-Fock as trial wave function, the phaseless AF QMC method generally gives better overall accuracy and a more uniform behavior than the coupled cluster CCSD(T) method in mapping the potential-energy curve. In both BH and N(2), we also study the use of multiple-determinant trial wave functions from multiconfiguration self-consistent-field calculations. The increase in computational cost versus the gain in statistical and systematic accuracy are examined. With such trial wave functions, excellent results are obtained across the entire region between equilibrium and the dissociation limit.


Journal of Chemical Physics | 2006

Auxiliary-field quantum Monte Carlo study of first- and second-row post-d elements

Wissam Al-Saidi; Henry Krakauer; Shiwei Zhang

A series of calculations for the first- and second-row post-d elements (Ga-Br and In-I) are presented using the phaseless auxiliary-field quantum Monte Carlo (AF QMC) method. This method is formulated in a Hilbert space defined by any chosen one-particle basis and maps the many-body problem into a linear combination of independent-particle solutions with external auxiliary fields. The phase/sign problem is handled approximately by the phaseless formalism using a trial wave function, which in our calculations was chosen to be the Hartree-Fock solution. We used the consistent correlated basis sets of Peterson et al. [J. Chem. Phys. 119, 11099 (2003); 119, 11113 (2003)], which employ a small-core relativistic pseudopotential. The AF QMC results are compared with experiment and with those from density functional (generalized gradient approximation and B3LYP) and CCSD(T) calculations. The AF QMC total energies agree with CCSD(T) to within a few millihartrees across the systems and over several basis sets. The calculated atomic electron affinities, ionization energies, and spectroscopic properties of dimers are, at large basis sets, in excellent agreement with experiment.


Physical Review B | 2008

Optimized norm-conserving Hartree-Fock pseudopotentials for plane-wave calculations

Wissam Al-Saidi; Eric J. Walter; Andrew M. Rappe

We report Hartree-Fock (HF)-based pseudopotentials suitable for plane-wave calculations. Unlike typical effective core potentials, the present pseudopotentials are finite at the origin and exhibit rapid convergence in a plane-wave basis; the optimized pseudopotential method [A. M. Rappe et al., Phys. Rev. B 41, 1227 (1990)] improves plane-wave convergence. Norm-conserving HF pseudopotentials are found to develop long-range non-Coulombic behavior which does not decay faster than


Physical Review B | 2006

Auxiliary-field quantum Monte Carlo study of TiO and MnO molecules

Wissam Al-Saidi; Henry Krakauer; Shiwei Zhang

1∕r


Computer Physics Communications | 2005

Quantum simulations of realistic systems by auxiliary fields

Shiwei Zhang; Henry Krakauer; Wissam Al-Saidi; Malliga Suewattana

, and is nonlocal. This behavior, which stems from the nonlocality of the exchange potential, is remedied using a recently developed self-consistent procedure [J. R. Trail and R. J. Needs, J. Chem. Phys. 122, 014112 (2005)]. The resulting pseudopotentials slightly violate the norm conservation of the core charge. We calculated several atomic properties using these pseudopotentials, and the results are in good agreement with all-electron HF values. The dissociation energies, equilibrium bond lengths, and frequencies of vibration of several dimers obtained with these HF pseudopotentials and plane waves are also in good agreement with all-electron results.


Journal of Chemical Physics | 2007

A study of H+H2 and several H-bonded molecules by phaseless auxiliary-field quantum Monte Carlo with plane wave and Gaussian basis sets

Wissam Al-Saidi; Henry Krakauer; Shiwei Zhang

Calculations of the binding energy of the transition metal oxide molecules TiO and MnO are presented, using a recently developed phaseless auxiliary field quantum Monte Carlo approach. This method maps the interacting many-body problem onto a linear combination of non-interacting problems by a complex Hubbard-Stratonovich transformation, and controls the phase/sign problem with a phaseless approximation relying on a trial wave function. It employs random walks in Slater determinant space to project the ground state of the system, and allows use of much of the same machinery as in standard density functional theory calculations, such as planewave basis and non-local pseudopotentials. The calculations used a single Slater determinant trial wave function obtained from a density functional calculation, with no further optimization. The calculated binding energies are in good agreement with experiment and with recent diffusion Monte Carlo results. Together with previous results for sp-bonded systems, the present study indicates that the phaseless auxiliary field method is a robust and promising approach for the study of correlation effects in real materials.


Physical Review B | 2010

Density functional study of PbTi03 nanocapacitors with Pt and Au electrodes

Wissam Al-Saidi; Andrew M. Rappe

Abstract To treat interacting quantum systems, it is often crucial to have accurate calculations beyond the mean-field level. Many-body simulations based on field-theoretical approaches are a promising tool for this purpose and are applied in several sub-fields of physics, in closely related forms. An major difficulty is the sign or phase problem, which causes the Monte Carlo variance to increase exponentially with system size. We address this issue in the context of auxiliary-field simulations of realistic electronic systems in condensed matter physics. We show how to use importance sampling of the complex fields to control the phase problem. An approximate approach is formulated with a trial determinant to constrain the paths in field space and completely eliminate the growth of the noise. For ab initio electronic structure calculations, this gives a many-body approach in the form of a “coherent” superposition of mean-field calculations, allowing direct incorporation of state-of-the-art technology from the latter (non-local pseudopotentials; high quality basis sets, etc.). In our test calculations, single Slater determinants from density functional theory or Hartree–Fock calculations were used as trial wave functions, with no additional optimization. The calculated dissociation energies of various molecules and the cohesive energy of bulk Si are in excellent agreement with experiment and are comparable to or better than the best existing theoretical results.

Collaboration


Dive into the Wissam Al-Saidi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew M. Rappe

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Kristen A. Fichthorn

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge