Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Witold Kot is active.

Publication


Featured researches published by Witold Kot.


Applied and Environmental Microbiology | 2013

Investigation of the Relationship between Lactococcal Host Cell Wall Polysaccharide Genotype and 936 Phage Receptor Binding Protein Phylogeny

Jennifer Mahony; Witold Kot; James Murphy; Stuart Ainsworth; Horst Neve; Lars Hestbjerg Hansen; Knut J. Heller; Søren J. Sørensen; Karin Hammer; Christian Cambillau; Finn K. Vogensen; Douwe van Sinderen

Comparative genomics of 11 lactococcal 936-type phages combined with host range analysis allowed subgrouping of these phage genomes, particularly with respect to their encoded receptor binding proteins. The so-called pellicle or cell wall polysaccharide of Lactococcus lactis, which has been implicated as a host receptor of (certain) 936-type phages, is specified by a large gene cluster, which, among different lactococcal strains, contains highly conserved regions as well as regions of diversity. The regions of diversity within this cluster on the genomes of lactococcal strains MG1363, SK11, IL1403, KF147, CV56, and UC509.9 were used for the development of a multiplex PCR system to identify the pellicle genotype of lactococcal strains used in this study. The resulting comparative analysis revealed an apparent correlation between the pellicle genotype of a given host strain and the host range of tested 936-type phages. Such a correlation would allow prediction of the intrinsic 936-type phage sensitivity of a particular lactococcal strain and substantiates the notion that the lactococcal pellicle polysaccharide represents the receptor for (certain) 936-type phages while also partially explaining the molecular reasons behind the observed narrow host range of such phages.


Applied and Environmental Microbiology | 2014

Combined Use of Bacteriophage K and a Novel Bacteriophage To Reduce Staphylococcus aureus Biofilm Formation

Diana R. Alves; A. Gaudion; Jessica E. Bean; P. Perez Esteban; Thomas Arnot; David Harper; Witold Kot; Lars Hestbjerg Hansen; Mark C. Enright; A. Tobias A. Jenkins

ABSTRACT Biofilms are major causes of impairment of wound healing and patient morbidity. One of the most common and aggressive wound pathogens is Staphylococcus aureus, displaying a large repertoire of virulence factors and commonly reduced susceptibility to antibiotics, such as the spread of methicillin-resistant S. aureus (MRSA). Bacteriophages are obligate parasites of bacteria. They multiply intracellularly and lyse their bacterial host, releasing their progeny. We isolated a novel phage, DRA88, which has a broad host range among S. aureus bacteria. Morphologically, the phage belongs to the Myoviridae family and comprises a large double-stranded DNA (dsDNA) genome of 141,907 bp. DRA88 was mixed with phage K to produce a high-titer mixture that showed strong lytic activity against a wide range of S. aureus isolates, including representatives of the major international MRSA clones and coagulase-negative Staphylococcus. Its efficacy was assessed both in planktonic cultures and when treating established biofilms produced by three different biofilm-producing S. aureus isolates. A significant reduction of biofilm biomass over 48 h of treatment was recorded in all cases. The phage mixture may form the basis of an effective treatment for infections caused by S. aureus biofilms.


Frontiers in Microbiology | 2014

Bacteriophages of Leuconostoc, Oenococcus, and Weissella

Witold Kot; Horst Neve; Knut J. Heller; Finn K. Vogensen

Leuconostoc (Ln.), Weissella, and Oenococcus form a group of related genera of lactic acid bacteria, which once all shared the name Leuconostoc. They are associated with plants, fermented vegetable products, raw milk, dairy products, meat, and fish. Most of industrially relevant Leuconostoc strains can be classified as either Ln. mesenteroides or Ln. pseudomesenteroides. They are important flavor producers in dairy fermentations and they initiate nearly all vegetable fermentations. Therefore, bacteriophages attacking Leuconostoc strains may negatively influence the production process. Bacteriophages attacking Leuconostoc strains were first reported in 1946. Since then, the majority of described Leuconostoc phages was isolated from either dairy products or fermented vegetable products. Both lytic and temperate phages of Leuconostoc were reported. Most of Leuconostoc phages examined using electron microscopy belong to the Siphoviridae family and differ in morphological details. Hybridization and comparative genomic studies of Leuconostoc phages suggest that they can be divided into several groups, however overall diversity of Leuconostoc phages is much lower as compared to, e.g., lactococcal phages. Several fully sequenced genomes of Leuconostoc phages have been deposited in public databases. Lytic phages of Leuconostoc can be divided into two host species-specific groups with similarly organized genomes that shared very low nucleotide similarity. Phages of dairy Leuconostoc have rather limited host-ranges. The receptor binding proteins of two lytic Ln. pseudomesenteroides phages have been identified. Molecular tools for detection of dairy Leuconostoc phages have been developed. The rather limited data on phages of Oenococcus and Weissella show that (i) lysogeny seems to be abundant in Oenococcus strains, and (ii) several phages infecting Weissella cibaria are also able to productively infect strains of other Weissella species and even strains of the genus Lactobacillus.


Applied and Environmental Microbiology | 2013

Classification of Lytic Bacteriophages Attacking Dairy Leuconostoc Starter Strains

Yahya Ali; Witold Kot; Zeynep Atamer; Jörg Hinrichs; Finn K. Vogensen; Knut J. Heller; Horst Neve

ABSTRACT A set of 83 lytic dairy bacteriophages (phages) infecting flavor-producing mesophilic starter strains of the Leuconostoc genus was characterized, and the first in-depth taxonomic scheme was established for this phage group. Phages were obtained from different sources, i.e., from dairy samples originating from 11 German dairies (50 Leuconostoc pseudomesenteroides [Ln. pseudomesenteroides] phages, 4 Ln. mesenteroides phages) and from 3 external phage collections (17 Ln. pseudomesenteroides phages, 12 Ln. mesenteroides phages). All phages belonged to the Siphoviridae family of phages with isometric heads (diameter, 55 nm) and noncontractile tails (length, 140 nm). With the exception of one phage (i.e., phage ΦLN25), all Ln. mesenteroides phages lysed the same host strains and revealed characteristic globular baseplate appendages. Phage ΦLN25, with different Y-shaped appendages, had a unique host range. Apart from two phages (i.e., phages P792 and P793), all Ln. pseudomesenteroides phages shared the same host range and had plain baseplates without distinguishable appendages. They were further characterized by the presence or absence of a collar below the phage head or by unique tails with straight striations. Phages P792 and P793 with characteristic fluffy baseplate appendages could propagate only on other specific hosts. All Ln. mesenteroides and all Ln. pseudomesenteroides phages were members of two (host species-specific) distinct genotypes but shared a limited conserved DNA region specifying their structural genes. A PCR detection system was established and was shown to be reliable for the detection of all Leuconostoc phage types.


Journal of Virological Methods | 2014

DPS – A rapid method for genome sequencing of DNA-containing bacteriophages directly from a single plaque

Witold Kot; Finn K. Vogensen; Søren J. Sørensen; Lars Hestbjerg Hansen

Bacteriophages (phages) coexist with bacteria in all environments and influence microbial diversity, evolution and industrial production processes. As a result of this major impact of phages on microbes, tools that allow rapid characterization of phages are needed. Today, one of the most powerful methods for characterization of phages is determination of the whole genome using high throughput sequencing approaches. Here a direct plaque sequencing (DPS) is described, which is a rapid method that allows easy full genome sequencing of DNA-containing phages using the Nextera XT™ kit. A combination of host-DNA removal followed by purification and concentration of the viral DNA, allowed the construction of Illumina-compatible sequencing libraries using the Nextera™ XT technology directly from single phage plaques without any whole genome amplification step. This method was tested on three Caudovirales phages; ϕ29 Podoviridae, P113g Siphoviridae and T4 Myovirdae, which are representative of >96% of all known phages, and were sequenced using the Illumina MiSeq platform. Successful de novo assembly of the viral genomes was possible.


Microbial Biotechnology | 2016

A novel bacteriophage cocktail reduces and disperses Pseudomonas aeruginosa biofilms under static and flow conditions.

Diana R. Alves; P. Perez-Esteban; Witold Kot; Jessica E. Bean; Thomas Arnot; Lars Hestbjerg Hansen; Mark C. Enright; A. Tobias A. Jenkins

Pseudomonas aeruginosa is an opportunistic human pathogen that forms highly stable communities – biofilms, which contribute to the establishment and maintenance of infections. The biofilm state and intrinsic/acquired bacterial resistance mechanisms contribute to resistance/tolerance to antibiotics that is frequently observed in P. aeruginosa isolates. Here we describe the isolation and characterization of six novel lytic bacteriophages: viruses that infect bacteria, which together efficiently infect and kill a wide range of P. aeruginosa clinical isolates. The phages were used to formulate a cocktail with the potential to eliminate P. aeruginosa PAO1 planktonic cultures. Two biofilm models were studied, one static and one dynamic, and the phage cocktail was assessed for its ability to reduce and disperse the biofilm biomass. For the static model, after 4 h of contact with the phage suspension (MOI 10) more than 95% of biofilm biomass was eliminated. In the flow biofilm model, a slower rate of activity by the phage was observed, but 48 h after addition of the phage cocktail the biofilm was dispersed, with most cells eliminated (> 4 logs) comparing with the control. This cocktail has the potential for development as a therapeutic to control P. aeruginosa infections, which are predominantly biofilm centred.


International Journal of Food Microbiology | 2014

Sequence and comparative analysis of Leuconostoc dairy bacteriophages.

Witold Kot; Lars Henrik Hansen; Horst Neve; Karin Hammer; Susanne Jacobsen; Per D. Pedersen; Søren J. Sørensen; Knut J. Heller; Finn K. Vogensen

Bacteriophages attacking Leuconostoc species may significantly influence the quality of the final product. There is however limited knowledge of this group of phages in the literature. We have determined the complete genome sequences of nine Leuconostoc bacteriophages virulent to either Leuconostoc mesenteroides or Leuconostoc pseudomesenteroides strains. The phages have dsDNA genomes with sizes ranging from 25.7 to 28.4 kb. Comparative genomics analysis helped classify the 9 phages into two classes, which correlates with the host species. High percentage of similarity within the classes on both nucleotide and protein levels was observed. Genome comparison also revealed very high conservation of the overall genomic organization between the classes. The genes were organized in functional modules responsible for replication, packaging, head and tail morphogenesis, cell lysis and regulation and modification, respectively. No lysogeny modules were detected. To our knowledge this report provides the first comparative genomic work done on Leuconostoc dairy phages.


Applied and Environmental Microbiology | 2013

Identification of the Receptor-Binding Protein in Lytic Leuconostoc pseudomesenteroides Bacteriophages

Witold Kot; Karin Hammer; Horst Neve; Finn K. Vogensen

ABSTRACT Two phages, P793 and ΦLN04, sharing 80.1% nucleotide sequence identity but having different strains of Leuconostoc pseudomesenteroides as hosts, were selected for identification of the host determinant gene. Construction of chimeric phages leading to the expected switch in host range identified the host determinant genes as ORF21P793/ORF23ΦLN04. The genes are located in the tail structural module and have low sequence similarity at the distal end.


Applied and Environmental Microbiology | 2017

Novel Variants of Streptococcus thermophilus Bacteriophages Are Indicative of Genetic Recombination among Phages from Different Bacterial Species

Paula Szymczak; Thomas Janzen; Ana Rute Neves; Witold Kot; Lars Hestbjerg Hansen; René Lametsch; Horst Neve; Charles M. A. P. Franz; Finn K. Vogensen

ABSTRACT Bacteriophages are the main cause of fermentation failures in dairy plants. The majority of Streptococcus thermophilus phages can be divided into either cos- or pac-type phages and are additionally characterized by examining the V2 region of their antireceptors. We screened a large number of S. thermophilus phages from the Chr. Hansen A/S collection, using PCR specific for the cos- or pac-type phages, as well as for the V2 antireceptor region. Three phages did not produce positive results with the assays. Analysis of phage morphologies indicated that two of these phages, CHPC577 and CHPC926, had shorter tails than the traditional S. thermophilus phages. The third phage, CHPC1151, had a tail size similar to those of the cos- or pac-type phages, but it displayed a different baseplate structure. Sequencing analysis revealed the genetic similarity of CHPC577 and CHPC926 with a subgroup of Lactococcus lactis P335 phages. Phage CHPC1151 was closely related to the atypical S. thermophilus phage 5093, homologous with a nondairy streptococcal prophage. By testing adsorption of the related streptococcal and lactococcal phages to the surface of S. thermophilus and L. lactis strains, we revealed the possibility of cross-interactions. Our data indicated that the use of S. thermophilus together with L. lactis, extensively applied for dairy fermentations, triggered the recombination between phages infecting different bacterial species. A notable diversity among S. thermophilus phage populations requires that a new classification of the group be proposed. IMPORTANCE Streptococcus thermophilus is a component of thermophilic starter cultures commonly used for cheese and yogurt production. Characterizing streptococcal phages, understanding their genetic relationships, and studying their interactions with various hosts are the necessary steps for preventing and controlling phage attacks that occur during dairy fermentations.


Molecular Microbiology | 2016

Transcriptome changes in STSV2‐infected Sulfolobus islandicus REY15A undergoing continuous CRISPR spacer acquisition

Carlos León‐Sobrino; Witold Kot; Roger A. Garrett

A transcriptome study was performed on Sulfolobus islandicus REY15A actively undergoing CRISPR spacer acquisition from the crenarchaeal monocaudavirus STSV2 in rich and basal media over a 6 day period. Spacer acquisition preceded strong host growth retardation, altered transcriptional activity of four different CRISPR‐Cas modules and changes in viral copy numbers, and with significant differences in the two media. Transcript levels of proteins involved in the cell cycle were reduced, whereas those of DNA replication, DNA repair, transcriptional regulation and some antitoxin–toxin pairs and transposases were unchanged or enhanced. Antisense RNAs were implicated in the transcriptional regulation of adaptation and interference modules of the type I‐A CRISPR‐Cas system, and evidence was found for the occurrence of functional co‐ordination between the single CRISPR‐Cas adaptation module and the functionally diverse interference modules.

Collaboration


Dive into the Witold Kot's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karin Hammer

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Lukasz Krych

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Łukasz Krych

University of Copenhagen

View shared research outputs
Researchain Logo
Decentralizing Knowledge