Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Witold Nowak is active.

Publication


Featured researches published by Witold Nowak.


Antioxidants & Redox Signaling | 2012

Heme Oxygenase-1 Inhibits Myoblast Differentiation by Targeting Myomirs

Magdalena Kozakowska; Maciej Ciesla; Anna Stefanska; Klaudia Skrzypek; Halina Was; Agnieszka Jazwa; Anna Grochot-Przeczek; Jerzy Kotlinowski; Agnieszka Szymula; Aleksandra Bartelik; Milena Mazan; Oleksandr Yagensky; Urszula Florczyk; Krzysztof Lemke; Anna Zebzda; Grzegorz Dyduch; Witold Nowak; Krzysztof Szade; Jacek Stepniewski; Marcin Majka; Rafal Derlacz; Agnieszka Loboda; Jozef Dulak; Alicja Jozkowicz

AIMS Heme oxygenase-1 (HMOX1) is a cytoprotective enzyme degrading heme to biliverdin, iron ions, and carbon monoxide, whose expression is induced in response to oxidative stress. Its overexpression has been suggested as a strategy improving survival of transplanted muscle precursors. RESULTS Here we demonstrated that HMOX1 inhibits differentiation of myoblasts and modulates miRNA processing: downregulates Lin28 and DGCR8, lowers the total pool of cellular miRNAs, and specifically blocks induction of myomirs. Genetic or pharmacological activation of HMOX1 in C2C12 cells reduces the abundance of miR-1, miR-133a, miR-133b, and miR-206, which is accompanied by augmented production of SDF-1 and miR-146a, decreased expression of MyoD, myogenin, and myosin, and disturbed formation of myotubes. Similar relationships between HMOX1 and myomirs were demonstrated in murine primary satellite cells isolated from skeletal muscles of HMOX1(+/+), HMOX1(+/-), and HMOX1(-/-) mice or in human rhabdomyosarcoma cell lines. Inhibition of myogenic development is independent of antioxidative properties of HMOX1. Instead it is mediated by CO-dependent inhibition of c/EBPδ binding to myoD promoter, can be imitated by SDF-1, and partially reversed by enforced expression of miR-133b and miR-206. Control C2C12 myoblasts injected to gastrocnemius muscles of NOD-SCID mice contribute to formation of muscle fibers. In contrast, HMOX1 overexpressing C2C12 myoblasts form fast growing, hyperplastic tumors, infiltrating the surrounding tissues, and disseminating to the lungs. INNOVATION We evidenced for the first time that HMOX1 inhibits differentiation of myoblasts, affects the miRNA processing enzymes, and modulates the miRNA transcriptome. CONCLUSION HMOX1 improves the survival of myoblasts, but concurrently through regulation of myomirs, may act similarly to oncogenes, increasing the risk of hyperplastic growth of myogenic precursors.


Free Radical Biology and Medicine | 2011

Opposite effects of HIF-1α and HIF-2α on the regulation of IL-8 expression in endothelial cells.

Urszula Florczyk; Szymon Czauderna; Anna Stachurska; Magdalena Tertil; Witold Nowak; Magdalena Kozakowska; Lorenz Poellinger; Alicja Jozkowicz; Agnieszka Loboda; Jozef Dulak

Recently we have shown that hypoxia as well as overexpression of the stable form of hypoxia-inducible factor-1α (HIF-1α) diminished the expression of interleukin-8 (IL-8) by inhibition of the Nrf2 transcription factor in HMEC-1 cells. Because HIF isoforms may exert different effects, we aimed to examine the influence of HIF-2α on IL-8 expression in endothelial cells. In contrast to HIF-1α, overexpression of HIF-2α obtained by adenoviral transduction resulted in increased expression of IL-8 in an Nrf2-independent way. Importantly, HIF-2α augmented the activity of SP-1, a transcription factor involved in IL-8 regulation and known coactivator of c-Myc. Additionally, HIF-1 decreased, whereas HIF-2 increased, c-Myc expression, and silencing of Mxi-1, a c-Myc antagonist, restored IL-8 expression downregulated by HIF-1α or hypoxia. Accordingly, binding of c-Myc to the IL-8 promoter was abolished in hypoxia. Importantly, both severe (0.5% O2) and mild (5% O2) hypoxia diminished IL-8 expression despite the stabilization of both HIF-1 and HIF-2. This study reveals the opposite roles of HIF-1α and HIF-2α in the regulation of IL-8 expression in endothelial cells. However, despite stabilization of both isoforms in hypoxia the effect of HIF-1 is predominant, and downregulation of IL-8 expression in hypoxia is caused by attenuation of Nrf2 and c-Myc.


Free Radical Biology and Medicine | 2011

Effects of heme oxygenase-1 on induction and development of chemically induced squamous cell carcinoma in mice

Halina Was; Malgorzata Sokolowska; Aleksandra Sierpniowska; Paweł Dominik; Klaudia Skrzypek; Bozena Lackowska; Antoni Pratnicki; Anna Grochot-Przeczek; Hevidar Taha; Jerzy Kotlinowski; Magdalena Kozakowska; Andrzej Mazan; Witold Nowak; Lucie Muchova; Libor Vitek; Anna Ratajska; Jozef Dulak; Alicja Jozkowicz

Heme oxygenase-1 (HO-1) is an antioxidative and cytoprotective enzyme, which may protect neoplastic cells against anticancer therapies, thereby promoting the progression of growing tumors. Our aim was to investigate the role of HO-1 in cancer induction. Experiments were performed in HO-1+/+, HO-1+/−, and HO-1−/− mice subjected to chemical induction of squamous cell carcinoma with 7,12-dimethylbenz[a]anthracene and phorbol 12-myristate 13-acetate. Measurements of cytoprotective genes in the livers evidenced systemic oxidative stress in the mice of all the HO-1 genotypes. Carcinogen-induced lesions appeared earlier in HO-1−/− and HO-1+/− than in wild-type animals. They also contained much higher concentrations of vascular endothelial growth factor and keratinocyte chemoattractant, but lower levels of tumor necrosis factor-α and interleukin-12. Furthermore, tumors grew much larger in HO-1 knockouts than in the other groups, which was accompanied by an increased rate of animal mortality. However, pathomorphological analysis indicated that HO-1−/− lesions were mainly large but benign papillomas. In contrast, in mice expressing HO-1, most lesions displayed dysplastic features and developed to invasive carcinoma. Thus, HO-1 may protect healthy tissues against carcinogen-induced injury, but in already growing tumors it seems to favor their progression toward more malignant forms.


PLOS ONE | 2013

Murine Bone Marrow Lin−Sca-1+CD45− Very Small Embryonic-Like (VSEL) Cells Are Heterogeneous Population Lacking Oct-4A Expression

Krzysztof Szade; Karolina Bukowska-Strakova; Witold Nowak; Agata Szade; Neli Kachamakova-Trojanowska; Monika Zukowska; Alicja Jozkowicz; Jozef Dulak

Murine very small embryonic-like (VSEL) cells, defined by the Lin−Sca-1+CD45− phenotype and small size, were described as pluripotent cells and proposed to be the most primitive hematopoietic precursors in adult bone marrow. Although their isolation and potential application rely entirely on flow cytometry, the immunophenotype of VSELs has not been extensively characterized. Our aim was to analyze the possible heterogeneity of Lin−Sca+CD45− population and investigate the extent to which VSELs characteristics may overlap with that of hematopoietic stem cells (HSCs) or endothelial progenitor cells (EPCs). The study evidenced that murine Lin−Sca-1+CD45− population was heterogeneous in terms of c-Kit and KDR expression. Accordingly, the c-Kit+KDR−, c-Kit−KDR+, and c-Kit−KDR− subpopulations could be distinguished, while c-Kit+KDR+ events were very rare. The c-Kit+KDR− subset contained almost solely small cells, meeting the size criterion of VSELs, in contrast to relatively bigger c-Kit−KDR+ cells. The c-Kit−KDR−FSClow subset was highly enriched in Annexin V-positive, apoptotic cells, hence omitted from further analysis. Importantly, using qRT-PCR, we evidenced lack of Oct-4A and Oct-4B mRNA expression either in whole adult murine bone marrow or in the sorted of Lin−Sca-1+CD45−FSClow population, even by single-cell qRT-PCR. We also found that the Lin−Sca-1+CD45−c-Kit+ subset did not exhibit hematopoietic potential in a single cell-derived colony in vitro assay, although it comprised the Sca-1+c-Kit+Lin− (SKL) CD34−CD45−CD105+ cells, expressing particular HSC markers. Co-culture of Lin−Sca-1+CD45−FSClow with OP9 cells did not induce hematopoietic potential. Further investigation revealed that SKL CD45−CD105+ subset consisted of early apoptotic cells with fragmented chromatin, and could be contaminated with nuclei expelled from erythroblasts. Concluding, murine bone marrow Lin−Sca-1+CD45−FSClow cells are heterogeneous population, which do not express the pluripotency marker Oct-4A. Despite expression of some hematopoietic markers by a Lin−Sca-1+CD45−c-Kit+KDR− subset of VSELs, they do not display hematopoietic potential in a clonogenic assay and are enriched in early apoptotic cells.


Investigative Ophthalmology & Visual Science | 2013

Long-Term Neuroprotective Effects of NT-4-Engineered Mesenchymal Stem Cells Injected Intravitreally in a Mouse Model of Acute Retinal Injury

Anna Machalińska; Miłosz P. Kawa; Ewa Pius-Sadowska; Jacek Stepniewski; Witold Nowak; Dorota Rogińska; Katarzyna Kaczyńska; Bartłomiej Baumert; Barbara Wiszniewska; Alicja Jozkowicz; Jozef Dulak; Bogusław Machaliński

PURPOSE Retinal degenerative diseases targeting the RPE and adjacent photoreceptors affect millions of people worldwide. The field of stem cell- and gene-based therapy holds great potential for the treatment of such diseases. The present study sought to graft genetically engineered mesenchymal stem cells (MSCs) that continuously produce neurotrophin-4 (NT-4) into the murine eye after the onset of acute retinal injury. METHODS C57BL/6 mice were subjected to acute retinal damage using a low dose of sodium iodate (20 mg/kg of body weight), followed by intravitreal injection of lentivirally modified MSC-NT-4 into the right eye. At 3 months after the MSC transplantation grafted cell survival, retinal function and gene expression were analyzed. RESULTS Immunofluorescence analysis confirmed that transplanted MSCs survived for at least 3 months after intravitreal injection and preferentially migrated toward sites of injury within the retina. MSC-NT-4 actively produced NT-4 in the injured retina and significantly protected damaged retinal cells, as evaluated by ERG and optical coherence tomography (OCT). Of importance, the long-term therapy with MSC-NT-4 was also associated with induction of prosurvival signaling, considerable overexpression of some subsets of transcripts, including several members of the crystallin β-γ superfamily (Cryba4, Crybb3, Cryba2, Crybb1, Crybb2, Cryba1, and Crygc) and significant upregulation of biological processes associated with visual perception, sensory perception of light stimulus, eye development, sensory organ development, and system development. CONCLUSIONS Transplantation of genetically modified MSCs that produce neurotrophic growth factors may represent a useful strategy for treatment of different forms of retinopathies in the future.


Journal of Diabetes Investigation | 2014

Number of circulating pro-angiogenic cells, growth factor and anti-oxidative gene profiles might be altered in type 2 diabetes with and without diabetic foot syndrome

Witold Nowak; Sebastian Borys; Katarzyna Kusinska; Karolina Bukowska-Strakova; Przemysław Witek; Teresa Koblik; Alicja Jozkowicz; Maciej T. Malecki; Jozef Dulak

Type 2 diabetes is often complicated by diabetic foot syndrome (DFS). We analyzed the circulating stem cells, growth factor and anti‐oxidant gene expression profiles in type 2 diabetes patients without or with different forms of DFS.


Frontiers in Cardiovascular Medicine | 2015

The Abdominal Aortic Aneurysm and Intraluminal Thrombus: Current Concepts of Development and Treatment

Aleksandra Piechota-Polanczyk; Alicja Jozkowicz; Witold Nowak; Wolf Eilenberg; Christoph Neumayer; Tadeusz Malinski; Ihor Huk; Christine Brostjan

The pathogenesis of the abdominal aortic aneurysm (AAA) shows several hallmarks of atherosclerotic and atherothrombotic disease, but comprises an additional, predominant feature of proteolysis resulting in the degradation and destabilization of the aortic wall. This review aims to summarize the current knowledge on AAA development, involving the accumulation of neutrophils in the intraluminal thrombus and their central role in creating an oxidative and proteolytic environment. Particular focus is placed on the controversial role of heme oxygenase 1/carbon monoxide and nitric oxide synthase/peroxynitrite, which may exert both protective and damaging effects in the development of the aneurysm. Treatment indications as well as surgical and pharmacological options for AAA therapy are discussed in light of recent reports.


Thrombosis and Haemostasis | 2012

Exercise training in intermittent claudication: Effects on antioxidant genes, inflammatory mediators and proangiogenic progenitor cells

Witold Nowak; Piotr Mika; Roman Nowobilski; Katarzyna Kusinska; Karolina Bukowska-Strakova; Rafał Niżankowski; Alicja Jozkowicz; Andrzej Szczeklik; Jozef Dulak

Exercise training remains a therapy of choice in intermittent claudication (IC). However, too exhaustive exercise may cause ischaemic injury and inflammatory response. We tested the impact of three-month treadmill training and single treadmill exercise on antioxidant gene expressions, cytokine concentrations and number of marrow-derived proangiogenic progenitor cells (PPC) in the blood of IC patients. Blood samples of 12 patients were collected before and after training, before and 1, 3 and 6 hours after the single exercise. PPCs were analysed with flow cytometry, cytokine concentrations were checked with Milliplex MAP, while expression of mRNAs and miRNAs was evaluated with qRT-PCR. Treadmill training improved pain-free walking time (from 144 ± 44 seconds [s] to 311 ± 134 s, p=0.02) and maximum walking time (from 578 ± 293 s to 859 ± 423 s, p=0.01) in IC patients. Before, but not after training, the single treadmill exercise increased the number of circulating CD45dimCD34+CD133-KDR+ PPCs (p=0.048), decreased expression of HMOX1 (p=0.04) in circulating leukocytes, reduced tumour necrosis factor-α (p=0.03) and tended to elevate myeloperoxidase (p=0.06) concentrations in plasma. In contrast, total plasminogen activator inhibitor-1 was decreased by single exercise only after, but not before training (p=0.02). Both before and after training the single exercise decreased monocyte chemoattractant protein (MCP)-1 (p=0.006 and p=0.03) concentration and increased SOD1 (p=0.001 and p=0.01) expression. Patients after training had also less interleukin-6 (p=0.03), but more MCP-1 (p=0.04) in the blood. In conclusion, treadmill training improves walking performance of IC patients, attenuates the single exercise-induced changes in gene expressions or PPC mobilisation, but may also lead to higher production of some proinflammatory cytokines.


Colloids and Surfaces B: Biointerfaces | 2016

Encapsulation of clozapine in polymeric nanocapsules and its biological effects.

Sylwia Łukasiewicz; Krzysztof Szczepanowicz; Karolina Podgórna; Ewa Błasiak; Nather Majeed; Sven Ove Ögren; Witold Nowak; Piotr Warszyński; Marta Dziedzicka-Wasylewska

Clozapine is an effective atypical antipsychotic drug that unfortunately exhibits poor oral bioavailability. Moreover, the clinical use of the compound is limited because of its numerous unfavorable and unsafe side effects. Therefore, the aim of the present study was the development of a new nanocarrier for a more effective clozapine delivery. Here, clozapine was encapsulated into polymeric nanocapsules (NCs). Polyelectrolyte multilayer shells were constructed by the technique of sequential adsorption of polyelectrolytes (LbL) using biocompatible polyanion PGA (Poly-L-glutamic acid, sodium salt) and polycation PLL (poly-L-lysine) on clozapine-loaded nanoemulsion cores. Pegylated external layers were prepared using PGA-g-PEG (PGA grafted by PEG (polyethylene glycol)). Clozapine was successfully loaded into the PLL-PGA nanocarriers (CLO-NCs) with an average size of 100 nm. In vitro analysis of the interactions of the CLO-NCs with the cells of the mononuclear phagocytic system (MPS) was conducted. Cell biocompatibility, phagocytosis potential, and cellular uptake were studied. Additionally, the biodistribution and behavioral effects of the encapsulated clozapine were also studied. The results indicate that surface modified (by PEG grafting) polymeric PLL-PGA CLO-NCs are very promising nanovehicles for improving clozapine delivery.


Cancer Letters | 2016

Endothelial precursor cell-based therapy to target the pathologic angiogenesis and compensate tumor hypoxia

Guillaume Collet; Krzysztof Szade; Witold Nowak; Krzysztof Klimkiewicz; Bouchra El Hafny-Rahbi; Karol Szczepanek; Daisuke Sugiyama; Kazimierz Weglarczyk; Alexandra Foucault-Collet; Alan Guichard; Andrzej Mazan; Mahdi Nadim; Fabienne Fasani; Nathalie Lamerant-Fayel; Catherine Grillon; Stéphane Petoud; Jean Claude Beloeil; Alicja Jozkowicz; Jozef Dulak; Claudine Kieda

Hypoxia-inducing pathologies as cancer develop pathologic and inefficient angiogenesis which rules tumor facilitating microenvironment, a key target for therapy. As such, the putative ability of endothelial precursor cells (EPCs) to specifically home to hypoxic sites of neovascularization prompted to design optimized, site-specific, cell-mediated, drug-/gene-targeting approach. Thus, EPC lines were established from aorta-gonad-mesonephros (AGM) of murine 10.5 dpc and 11.5 dpc embryo when endothelial repertoire is completed. Lines representing early endothelial differentiation steps were selected: MAgEC10.5 and MagEC11.5. Distinct in maturation, they differently express VEGF receptors, VE-cadherin and chemokine/receptors. MAgEC11.5, more differentiated than MAgEC 10.5, displayed faster angiogenesis in vitro, different response to hypoxia and chemokines. Both MAgEC lines cooperated to tube-like formation with mature endothelial cells and invaded tumor spheroids through a vasculogenesis-like process. In vivo, both MAgEC-formed vessels established blood flow. Intravenously injected, both MAgECs invaded Matrigel(TM)-plugs and targeted tumors. Here we show that EPCs (MAgEC11.5) target tumor angiogenesis and allow local overexpression of hypoxia-driven soluble VEGF-receptor2 enabling drastic tumor growth reduction. We propose that such EPCs, able to target tumor angiogenesis, could act as therapeutic gene vehicles to inhibit tumor growth by vessel normalization resulting from tumor hypoxia alleviation.

Collaboration


Dive into the Witold Nowak's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jozef Dulak

Jagiellonian University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Agata Szade

Jagiellonian University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge