Woei Cherng Shyu
China Medical University (PRC)
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Woei Cherng Shyu.
Circulation | 2004
Woei Cherng Shyu; Shinn Zong Lin; Hui I. Yang; Yi Shiuan Tzeng; Cheng Yoong Pang; Pao Sheng Yen; Hung Li
Background—Stroke is a leading cause of death and disability worldwide; however, no effective treatment currently exists. Methods and Results—Rats receiving subcutaneous granulocyte colony-stimulating factor (G-CSF) showed less cerebral infarction, as evaluated by MRI, and improved motor performance after right middle cerebral artery ligation than vehicle-treated control rats. Subcutaneous administration of G-CSF enhanced the availability of circulating hematopoietic stem cells to the brain and their capacity for neurogenesis and angiogenesis in rats with cerebral ischemia. Conclusions—G-CSF induced increases in bone marrow cell mobilization and targeting to the brain, reducing the volume of cerebral infarction and improving neural plasticity and vascularization.
Cell Transplantation | 2011
Dah Ching Ding; Woei Cherng Shyu; Shinn Zong Lin
Stem cells have two features: the ability to differentiate along different lineages and the ability of self-renewal. Two major types of stem cells have been described, namely, embryonic stem cells and adult stem cells. Embryonic stem cells (ESC) are obtained from the inner cell mass of the blastocyst and are associated with tumorigenesis, and the use of human ESCs involves ethical and legal considerations. The use of adult mesenchymal stem cells is less problematic with regard to these issues. Mesenchymal stem cells (MSCs) are stromal cells that have the ability to self-renew and also exhibit multilineage differentiation. MSCs can be isolated from a variety of tissues, such as umbilical cord, endometrial polyps, menses blood, bone marrow, adipose tissue, etc. This is because the ease of harvest and quantity obtained make these sources most practical for experimental and possible clinical applications. Recently, MSCs have been found in new sources, such as menstrual blood and endometrium. There are likely more sources of MSCs waiting to be discovered, and MSCs may be a good candidate for future experimental or clinical applications. One of the major challenges is to elucidate the mechanisms of differentiation, mobilization, and homing of MSCs, which are highly complex. The multipotent properties of MSCs make them an attractive choice for possible development of clinical applications. Future studies should explore the role of MSCs in differentiation, transplantation, and immune response in various diseases.
Canadian Medical Association Journal | 2006
Woei Cherng Shyu; Shinn Zong Lin; Chau Chin Lee; Demeral David Liu; Hung Li
Background: Because granulocyte colony-stimulating factor (G-CSF) has anti-inflammatory and neuroprotective properties and is known to mobilize stem cells, it may be useful in the treatment of acute ischemic stroke. We sought to examine the feasibility, safety and efficacy of using G-CSF to treat acute stroke. Methods: We conducted a randomized, blinded controlled trial involving 10 patients with acute cerebral infarction (middle cerebral artery territory as documented by the admission MRI) who presented within 7 days of onset and whose scores on the National Institutes of Health Stroke Scale (NIHSS) were between 9 and 20. Patients were assigned to either G-CSF therapy or usual care. The G-CSF group (n = 7) received subcutaneous G-CSF injections (15 μg/kg per day) for 5 days. The primary outcome was percentage changes between baseline and 12-month follow-up in mean group scores on 4 clinical scales: the NIHSS, European Stroke Scale (ESS), ESS Motor Subscale (EMS) and Barthel Index (BI). We also assessed neurologic functioning using PET to measure cerebral uptake of fluorodeoxyglucose in the cortical areas surrounding the ischemic core. Results: All of the patients completed the 5-day course of treatment, and none were lost to follow-up. No severe adverse effects were seen in patients receiving G-CSF. There was greater improvement in neurologic functioning between baseline and 12-month follow-up in the G-CSF group than in the control group (NIHSS: 59% change in the mean G-CSF group score v. 36% in the mean control group score, ESS: 33% v. 20%, EMS: 106% v. 58%, BI: 120% v. 60%). Although at 12 months there was no difference between the 2 groups in cerebral uptake of fluorodeoxyglucose in the ischemic core, uptake in the area surrounding the core was significantly improved in the G-CSF group compared with the control group. There was positive correlation between metabolic activity and EMS score following simple linear correlation analysis. Interpretation: Our preliminary evidence suggests that using G-CSF as therapy for acute stroke is safe and feasible and leads to improved neurologic outcomes.
Neurobiology of Disease | 2007
Dah Ching Ding; Woei Cherng Shyu; Ming Fu Chiang; Shinn Zong Lin; Ying Chen Chang; Hsiao Jung Wang; Ching Yuan Su; Hung Li
Neuroplasticity subsequent to functional angiogenesis is an important goal for cell-based therapy of ischemic neural tissues. At present, the cellular and molecular mechanisms involved are still not well understood. In this study, we isolated mesenchymal stem cells (MSCs) from Whartons jelly (WJ) to obtain clonally expanded human umbilical cord-derived mesenchymal stem cells (HUCMSCs) with multilineage differentiation potential. Experimental rats receiving intracerebral HUCMSC transplantation showed significantly improved neurological function compared to vehicle-treated control rats. Cortical neuronal activity, as evaluated by proton MR spectroscopy (1H-MRS), also increased considerably in the transplantation group. Transplanted HUCMSCs migrated towards the ischemic boundary zone and differentiated into glial, neuronal, doublecortin+, CXCR4+, and vascular endothelial cells to enhance neuroplasticity in the ischemic brain. In addition, HUCMSC transplantation promoted the formation of new vessels to increase local cortical blood flow in the ischemic hemisphere. Modulation by stem cell-derived macrophage/microglial interactions, and increased beta1-integrin expression, might enhance this angiogenic architecture within the ischemic brain. Inhibition of beta1-integrin expression blocked local angiogenesis and reduced recovery from neurological deficit. In addition, significantly increased modulation of neurotrophic factor expression was also found in the HUCMSC transplantation group. In summary, regulation of beta1-integrin expression plays a critical role in the plasticity of the ischemic brain after the implantation of HUCMSCs.
The Journal of Neuroscience | 2006
Woei Cherng Shyu; Shinn Zong Lin; Ming Fu Chiang; Ching Yuan Su; Hung Li
Although stem cell-based treatments for stroke and other neurodegenerative diseases have advanced rapidly, there are still few clinical treatments available. In this study, rats receiving intracerebral peripheral blood hematopoietic stem cell (CD34+) (PBSC) transplantation showed much more improvement in neurological function after chronic cerebral ischemia in comparison with vehicle-treated control rats. Using laser-scanning confocal microscopy, implanted PBSCs were seen to differentiate into glial cells [GFAP+ (glial fibrillary acidic protein-positive)], neurons [Nestin+, MAP-2+ (microtubule-associated protein 2-positive), Neu-N+ (neuronal nuclear antigen-positive)], and vascular endothelial cells [vWF+ (von Willebrand factor-positive)], thereby enhancing neuroplastic effects in the ischemic brain. Cortical neuronal activity, as evaluated by 1H-MRS (proton magnetic resonance spectroscopy), also increased considerably in PBSC-treated rats compared with a vehicle-treated control group. In addition, PBSC implantation promoted the formation of new vessels, thereby increasing the local cortical blood flow in the ischemic hemisphere. These observations may be explained by the involvement of stem cell-derived macrophage/microglial cells, and β1 integrin expression, which might enhance this angiogenic architecture over the ischemic brain. Furthermore, quantitative reverse transcription-PCR analysis showed significantly increased modulation of neurotrophic factor expression in the ischemic hemisphere of the PBSC-transplanted rats compared with vehicle-treated control rats. Thus, intracerebral PBSC transplantation might have potential as a therapeutic strategy for treating cerebrovascular diseases.
Journal of Pharmacology and Experimental Therapeutics | 2007
Woei Cherng Shyu; Shinn Zong Lin; Pao Sheng Yen; Ching Yuan Su; Der-Cherng Chen; Hsiao Jung Wang; Hung Li
Stromal cell-derived factor (SDF)-1α is involved in the trafficking of hematopoietic stem cells from bone marrow to peripheral blood, and its expression is increased in the penumbra of the ischemic brain. In this study, SDF-1α was found to exert neuroprotective effects that rescued primary cortical cultures from H2O2 neurotoxicity, and to modulate neurotrophic factor expression. Rats receiving intracerebral administration of SDF-1α showed less cerebral infarction due to up-regulation of antiapoptotic proteins, and they had improved motor performance. SDF-1α injection enhanced the targeting of bone marrow (BM)-derived cells to the injured brain, as demonstrated in green fluorescent protein-chimeric mice with cerebral ischemia. In addition, increased vascular density in the ischemic cortex of SDF-1α-treated rats enhanced functional local cerebral blood flow. In summary, intracerebral administration of SDF-1α resulted in neuroprotection against neurotoxic insult, and it induced increased BM-derived cell targeting to the ischemic brain, thereby reducing the volume of cerebral infarction and improving neural plasticity.
The Journal of Neuroscience | 2005
Woei Cherng Shyu; Shinn Zong Lin; Ming Fu Chiang; Dah Ching Ding; Kuo Wei Li; Shih Fen Chen; Hui I. Yang; Hung Li
Prion diseases are induced by pathologically misfolded prion protein (PrPSc), which recruit normal sialoglycoprotein PrPC by a template-directed process. In this study, we investigated the expression of PrPC in a rat model of cerebral ischemia to more fully understand its physiological role. Immunohistochemical analysis demonstrated that PrPC-immunoreactive cells increased significantly in the penumbra of ischemic rat brain compared with the untreated brain. Western blot analysis showed that PrPC protein expression increased in ischemic brain tissue in a time-dependent manner. In addition, PrPC protein expression was seen to colocalize with neuron, glial, and vascular endothelial cells in the penumbric region of the ischemic brain. Overexpression of PrPC by injection of rAd (replication-defective recombinant adenoviral)-PGK (phosphoglycerate kinase)-PrPC-Flag into ischemic rat brain improved neurological behavior and reduced the volume of cerebral infarction, which is supportive of a role for PrPC in the neuroprotective adaptive cellular response to ischemic lesions. Concomitant upregulation of PrPC and activated extracellular signal-regulated kinase (ERK1/2) under hypoxia–reoxygenation in primary cortical cultures was shown to be dependent on ERK1/2 phosphorylation. During hypoxia–reoxygenation, mouse neuroblastoma cell line N18 cells transfected with luciferase rat PrPC promoter reporter constructs, containing the heat shock element (HSE), expressed higher luciferase activities (3- to 10-fold) than those cells transfected with constructs not containing HSE. We propose that HSTF-1 (hypoxia-activated transcription factor), phosphorylated by ERK1/2, may in turn interact with HSE in the promoter of PrPC resulting in gene expression of the prion gene. In summary, we conclude that upregulation of PrPC expression after cerebral ischemia and hypoxia exerts a neuroprotective effect on injured neural tissue. This study suggests that PrPC has physiological relevance to cerebral ischemic injury and could be useful as a therapeutic target for the treatment of cerebral ischemia.
Cell Transplantation | 2007
Ying Chao Chang; Woei Cherng Shyu; Shinn Zong Lin; Hung Li
Stroke remains a leading cause of death and disability worldwide. An increasing number of animal studies and preclinical trials have, however, provided evidence that regenerative cell-based therapies can lead to functional recovery in stroke patients. Stem cells can differentiate into neural lineages to replace lost neurons. Moreover, they provide trophic support to tissue at risk in the penumbra surrounding the infarct area, enhance vasculogenesis, and help promote survival, migration, and differentiation of the endogenous precursor cells after stroke. Stem cells are highly migratory and seem to be attracted to areas of brain pathology such as ischemic regions. The pathotropism may follow the paradigm of stem cell homing to bone marrow and leukocytes migrating to inflammatory tissue. The molecular signaling therefore may involve various chemokines, cytokines, and integrins. Among these, stromal cell-derived factor-1 (SDF-1)/CXC chemokine receptor-4 (CXCR4) signaling is required for the interaction of stem cells and ischemia-damaged host tissues. SDF-1 is secreted primarily by bone marrow fibroblasts and is required for BMSC homing to bone marrow. Overexpression of SDF-1 in ischemic tissues has been found to enhance stem cell recruitment from peripheral blood and to induce neoangiogenesis. Furthermore, SDF-1 expression in the lesioned area peaked within 7 days postischemia, in concordance with the time window of G-CSF therapy for stroke. Recent data have shown that SDF-1 expression is directly proportional to reduced tissue oxygen tension. SDF-1 gene expression is regulated by hypoxic-inducible factor-1 (HIF-1), a hypoxia-dependent stabilization transcription factor. Thus, ischemic tissue may recruit circulating progenitors regulated by hypoxia through differential expression of HIF-1α and SDF-1. In addition to SDF-1, β2-integrins also play a role in the homing of hematopoietic progenitor cells to sites of ischemia and are critical for their neovascularization capacity. In our recent report, increased expression of β1-integrins apparently contributed to the local neovasculization of the ischemic brain as well as its functional recovery. Identification of the molecular pathways involved in stem cell homing into the ischemic areas could pave the way for the development of new treatment regimens, perhaps using small molecules, designed to enhance endogeneous mobilization of stem cells in various disease states, including chronic stroke and other neurodegenerative diseases. For maximal functional recovery, however, regenerative therapy may need to follow combinatorial approaches, which may include cell replacement, trophic support, protection from oxidative stress, and the neutralization of the growth-inhibitory components for endogenous neuronal stem cells.
Journal of Clinical Investigation | 2008
Woei Cherng Shyu; Shinn Zong Lin; Ming Fu Chiang; Der-Cherng Chen; Ching Yuan Su; Hsiao Jung Wang; Ren Shyan Liu; Chang Hai Tsai; Hung Li
Secretoneurin (SN), a neuropeptide derived from secretogranin II, promotes neurite outgrowth of immature cerebellar granule cells. SN also aids in the growth and repair of neuronal tissue, although the precise mechanisms underlying the promotion of brain tissue neuroprotection and plasticity by SN are not understood. Here, in a rat model of stroke and in ischemic human brain tissue, SN was markedly upregulated in both neurons and endothelial cells. SN-mediated neuroprotection rescued primary cortical cell cultures from oxygen/glucose deprivation. SN also induced expression of the antiapoptotic proteins Bcl-2 and Bcl-xL through the Jak2/Stat3 pathway and inhibited apoptosis by blocking caspase-3 activation. In addition, rats with occluded right middle cerebral arteries showed less cerebral infarction, improved motor performance, and increased brain metabolic activity following i.v. administration of SN. Furthermore, SN injection enhanced stem cell targeting to the injured brain in mice and promoted the formation of new blood vessels to increase local cortical blood flow in the ischemic hemisphere. Both in vitro and in vivo, SN not only promoted neuroprotection, but also enhanced neurogenesis and angiogenesis. Our results demonstrate that SN acts directly on neurons after hypoxia and ischemic insult to further their survival by activating the Jak2/Stat3 pathway.
Trends in Molecular Medicine | 2011
Ted Weita Lai; Woei Cherng Shyu; Yu Tian Wang
Despite abundant evidence from basic/preclinical research that excessive NMDAR (N-methyl-d-aspartate receptor) stimulation is a crucial step required for brain damage following a stroke, clinical trials for NMDAR blockers have all ended with disappointments. The past decade of stroke research has revealed distinct NMDAR subpopulations and many specific effectors downstream of these receptors that are differentially responsible for neuronal survival and death. These new advancements provide promising targets for the development of novel NMDAR-based neuroprotective stroke therapies that could have greater therapeutic windows and reduced side effects. In this review, we discuss these advancements with a particular emphasis on the identification of novel signaling effectors downstream of proneuronal death NMDARs and the potential implications of these findings for the development of stroke therapeutics.