Woei-Nan Bair
University of Maryland, Baltimore
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Woei-Nan Bair.
Gait & Posture | 2011
Woei-Nan Bair; José Angelo Barela; Jill Whitall; John J. Jeka; Jane E. Clark
In two experiments, the ability to use multisensory information (haptic information, provided by lightly touching a stationary surface, and vision) for quiet standing was examined in typically developing (TD) children, adults, and in seven-year-old children with Developmental Coordination Disorder (DCD). Four sensory conditions (no touch/no vision, with touch/no vision, no touch/with vision, and with touch/with vision) were employed. In experiment 1, we tested four-, six- and eight-year-old TD children and adults to provide a developmental landscape for performance on this task. In experiment 2, we tested a group of seven-year-old children with DCD and their age-matched TD peers. For all groups, touch robustly attenuated standing sway suggesting that children as young as four years old use touch information similarly to adults. Touch was less effective in children with DCD compared to their TD peers, especially in attenuating their sway velocity. Children with DCD, unlike their TD peers, also benefited from using vision to reduce sway. The present results suggest that children with DCD benefit from using vision in combination with touch information for standing control possibly due to their less well developed internal models of body orientation and self-motion. Internal model deficits, combined with other known deficits such as postural muscles activation timing deficits, may exacerbate the balance impairment in children with DCD.
PLOS ONE | 2012
Woei-Nan Bair; Tim Kiemel; John J. Jeka; Jane E. Clark
Background Developmental Coordination Disorder (DCD) is a leading movement disorder in children that commonly involves poor postural control. Multisensory integration deficit, especially the inability to adaptively reweight to changing sensory conditions, has been proposed as a possible mechanism but with insufficient characterization. Empirical quantification of reweighting significantly advances our understanding of its developmental onset and improves the characterization of its difference in children with DCD compared to their typically developing (TD) peers. Methodology/Principal Findings Twenty children with DCD (6.6 to 11.8 years) were tested with a protocol in which visual scene and touch bar simultaneously oscillateded medio-laterally at different frequencies and various amplitudes. Their data were compared to data on TD children (4.2 to 10.8 years) from a previous study. Gains and phases were calculated for medio-lateral responses of the head and center of mass to both sensory stimuli. Gains and phases were simultaneously fitted by linear functions of age for each amplitude condition, segment, modality and group. Fitted gains and phases at two comparison ages (6.6 and 10.8 years) were tested for reweighting within each group and for group differences. Children with DCD reweight touch and vision at a later age (10.8 years) than their TD peers (4.2 years). Children with DCD demonstrate a weak visual reweighting, no advanced multisensory fusion and phase lags larger than those of TD children in response to both touch and vision. Conclusions/Significance Two developmental perspectives, postural body scheme and dorsal stream development, are provided to explain the weak vision reweighting. The lack of multisensory fusion supports the notion that optimal multisensory integration is a slow developmental process and is vulnerable in children with DCD.
Clinical Biomechanics | 2012
Don A. Yungher; Judith Morgia; Woei-Nan Bair; Mario Inacio; Brock A. Beamer; Michelle G. Prettyman; Mathew W. Rogers
BACKGROUND Fall prevention for older adults is dependent on the ability to maintain protective balance. This study measured the short-term changes of protective stepping following waist-pull perturbations in the medio-lateral direction, to identify what, if any, properties of protective stepping are improved with repeated perturbation exposures. METHODS Sixty waist-pulls (2 directions × 5 intensities × 6 repetitions) from a single session were analyzed separately as early, middle, and late testing periods, for a comparison over time of typical responses. Outcome measures included the number of evoked steps, type of step, incidence of interlimb collisions, and kinematic and kinetic properties of the first step in frequently used crossover-type responses. FINDINGS Improvements were evident as significantly reduced number of steps and collisions. However, these improvements could not be completely accounted for by significant changes in first step kinematic or kinetic properties. INTERPRETATION We infer that older individuals experiencing repeated lateral waist-pull perturbations optimize the predictive or feed-forward motor control for balance recovery through stepping.
Current Aging Science | 2014
Odessa Addison; Patricia M. Young; Mario Inacio; Woei-Nan Bair; Michelle G. Prettyman; Brock A. Beamer; Alice S. Ryan; Mathew W. Rogers
BACKGROUND Intramuscular adipose tissue (IMAT) of the lower extremity is a strong negative predictor of mobility function. Variability in temporal gait factors is another important predictor of mobility function. The purpose of this study was to examine the relationships between IMAT in the hip and thigh muscles, balance, and temporal gait variability in older adults. METHODS Forty-eight healthy community dwelling older adults (74 +/- 1 year) underwent a CT scan to quantify IMAT in the gluteus maximus (Gmax), gluteus medius/minimus (Gmed/min), hamstrings, vastus lateralis, and adductor muscles. Temporal Gait measures were collected on a GAITRite walkway and gait variability was determined by calculating intraindividual standard deviations. Individuals were divided by tertiles of temporal gait variability into categories of high, medium, and low variability. Differences in the IMAT of the hip abductors were calculated for those with high and low gait variability and partial correlations for gait variability and all muscle composition measures were determined for all variables with normalized gait speed as a covariate. RESULTS Gmed/min IMAT was greater in those with higher gait variability compared to those with lower gait variability (p<0.05). Gmed/min IMAT was related to stride width variability (r=0.30, p<0.05). Gmax IMAT was also related to time variability of swing (r=0.42), stance (r=0.26), double limb support (r=0.43), double support loading (r=0.44), and double support unloading (r=0.50) (all p<0.05). CONCLUSION Increased IMAT in the proximal hip muscles, particularly the hip abductors, was associated with increased gait variability and poorer balance. These findings may have implications for the assessment and treatment of balance and falls such that interventions for enhancing balance and mobility among older individuals should take into account the importance of gluteal muscle composition.
Clinical Biomechanics | 2013
Patricia M. Young; Jill Whitall; Woei-Nan Bair; Mathew W. Rogers
BACKGROUND Asymmetries in dynamic balance stability have been previously observed. The goal of this study was to determine whether leg preference influenced the stepping response to a waist-pull perturbation in older adult fallers and non-fallers. METHODS 39 healthy, community-dwelling, older adult (>65 years) volunteers participated. Participants were grouped into non-faller and faller cohorts based on fall history in the 12 months prior to the study. Participants received 60 lateral waist-pull perturbations of varying magnitude towards their preferred and non-preferred sides during quiet standing. Outcome measures included balance tolerance limit, number of recovery steps taken and type of recovery step taken for perturbations to each side. FINDINGS No significant differences in balance tolerance limit (P ≥ 0.102) or number of recovery steps taken (η(2)partial ≤ 0.027; P ≥ 0.442) were observed between perturbations towards the preferred and non-preferred legs. However, non-faller participants more frequently responded with a medial step when pulled towards their non-preferred side and cross-over steps when pulled towards their preferred side (P=0.015). INTERPRETATION Leg preference may influence the protective stepping response to standing balance perturbations in older adults at risk for falls, particularly with the type of recovery responses used. Such asymmetries in balance stability recovery may represent a contributing factor for falls among older individuals and should be considered for rehabilitation interventions aimed at improving balance stability and reducing fall risk.
Journal of Biomechanics | 2015
Masahiro Fujimoto; Woei-Nan Bair; Mark W. Rogers
When balance is disturbed, location of the center of pressure (COP) contributes to a persons ability to recover from a perturbation. This study investigated COP control prior to first step lift-off (FSLO) during lateral perturbations in older non-fallers and fallers. 38 non-fallers and 16 fallers received lateral waist-pulls at 5 different intensities. Crossover stepping responses at the intensity level where the largest number of subjects responded with crossover steps were analyzed. Whole-body center of mass (COM) and COP positions in the medio-lateral (ML) direction with respect to the base of support (BOS), and COP velocity were calculated. An inverted pendulum model was used to define the BOS stability boundary at FSLO, which was also adjusted using the COP position at FSLO (functional boundary). No significant differences were found in the COP velocities between fallers and non-fallers (p>.093). However, the COP positions for fallers were located significantly more medial at FSLO (p≤.01), resulting in a significantly reduced functional boundary. Although the stability margins, measures of stability based on the BOS, were significantly larger than zero for fallers (p≤.004), they were not significantly different from zero for the functional boundary, i.e., reaching the functional stability limit. Fallers had reduced functional limits of stability in the ML direction, which would predispose them to more precarious stability conditions than non-fallers. This could be a cause for taking more steps than non-fallers for balance recovery as we observed. The functional boundary estimation may be a more sensitive marker of balance instability than the BOS boundary.
Clinical Biomechanics | 2016
Woei-Nan Bair; Michelle G. Prettyman; Brock A. Beamer; Mathew W. Rogers
BACKGROUND Protective stepping evoked by externally applied lateral perturbations reveals balance deficits underlying falls. However, a lack of comprehensive information about the control of different stepping strategies in relation to the magnitude of perturbation limits understanding of balance control in relation to age and fall status. The aim of this study was to investigate different protective stepping strategies and their kinematic and behavioral control characteristics in response to different magnitudes of lateral waist-pulls between older fallers and non-fallers. METHODS Fifty-two community-dwelling older adults (16 fallers) reacted naturally to maintain balance in response to five magnitudes of lateral waist-pulls. The balance tolerance limit (BTL, waist-pull magnitude where protective steps transitioned from single to multiple steps), first step control characteristics (stepping frequency and counts, spatial-temporal kinematic, and trunk position at landing) of four naturally selected protective step types were compared between fallers and non-fallers at- and above-BTL. FINDINGS Fallers took medial-steps most frequently while non-fallers most often took crossover-back-steps. Only non-fallers varied their step count and first step control parameters by step type at the instants of step initiation (onset time) and termination (trunk position), while both groups modulated step execution parameters (single stance duration and step length) by step type. Group differences were generally better demonstrated above-BTL. INTERPRETATION Fallers primarily used a biomechanically less effective medial-stepping strategy that may be partially explained by reduced somato-sensation. Fallers did not modulate their step parameters by step type at first step initiation and termination, instances particularly vulnerable to instability, reflecting their limitations in balance control during protective stepping.
Archives of Physical Medicine and Rehabilitation | 2017
Odessa Addison; Mario Inacio; Woei-Nan Bair; Brock A. Beamer; Alice S. Ryan; Mark W. Rogers
OBJECTIVES To examine differences in hip abductor strength and composition between older adults who primarily use medial step versus cross-step recovery strategies to lateral balance perturbations. DESIGN Cross-sectional. SETTING University research laboratory. PARTICIPANTS Community-dwelling older adults (N=40) divided into medial steppers (n=14) and cross-steppers (n=26) based on the first step of balance recovery after a lateral balance perturbation. INTERVENTIONS Not applicable. MAIN OUTCOME MEASURES Computed tomography scans to quantify lean tissue and intramuscular adipose tissue (IMAT) areas in the hip abductor, hip abductor isokinetic torque, and first step length. RESULTS Medial steppers took medial steps in 71.1% of trials versus 4.6% of trials with cross-steps. The cross-steppers when compared with medial steppers, had lower hip abductor IMAT (24.7±0.7% vs 29.9±2.8%; P<.05), greater abductor torque (63.3±3.6Nm vs 48.4±4.1Nm; P<.01), and greater normalized first step length (.75±.03 vs .43±.08; P<.001). There was no difference in hip abductor lean tissue between the groups (P>.05). CONCLUSIONS Our findings suggest that older adults who initially use a medial step to recover lateral balance have lower hip abductor torque and may be less able to execute a biomechanically more stable cross-step. This may be related to increased IMAT levels. Assessments and interventions for enhancing balance and decreasing fall risk should take the role of the hip abductor into account.
Journal of Biomechanics | 2017
Masahiro Fujimoto; Woei-Nan Bair; Mark W. Rogers
An inability to recover lateral balance with a single step is predictive of future falls in older adults. This study investigated if balance stability at first step lift-off (FSLO) would be different between multiple and single stepping responses to lateral perturbations. 54 healthy older adults received left and right waist-pulls at 5 different intensities (levels 1-5). Crossover stepping responses at and above intensity level 3 that induced both single and multiple steps were analyzed. Whole-body center of mass (COM) and center of pressure (COP) positions in the medio-lateral direction with respect to the base of support were calculated. An inverted pendulum model was used to define the lateral stability boundary, which was also adjusted using the COP position at FSLO (functional boundary). No significant differences were detected in the COP positions between the responses at FSLO (p≥0.075), indicating no difference in the functional boundaries between the responses. Significantly smaller stability margins were observed at first step landing for multiple steps at all levels (p≤0.024), while stability margins were also significantly smaller at FSLO for level 3 and 4 (p≤0.048). These findings indicate that although reduced stability at first foot contact would be associated with taking additional steps, stepping responses could also be attributable to the COM motion state as early as first step lift-off, preceding foot contact. Perturbation-based training interventions aimed at improving the reactive control of stability would reduce initial balance instability at first step lift-off and possibly the consequent need for multiple steps in response to balance perturbations.
Experimental Brain Research | 2007
Woei-Nan Bair; Tim Kiemel; John J. Jeka; Jane E. Clark