Wojciech Dybalski
Technische Universität München
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Wojciech Dybalski.
Letters in Mathematical Physics | 2005
Wojciech Dybalski
Within the framework of local quantum physics we construct a scattering theory of stable, massive particles without assuming mass gaps. This extension of the Haag–Ruelle theory is based on advances in the harmonic analysis of local operators. Our construction is restricted to theories complying with a regularity property introduced by Herbst. The paper concludes with a brief discussion of the status of this assumption.
Communications in Mathematical Physics | 2011
Wojciech Dybalski; Yoh Tanimoto
This paper presents the first examples of massless relativistic quantum field theories which are interacting and asymptotically complete. These two-dimensional theories are obtained by an application of a deformation procedure, introduced recently by Grosse and Lechner, to chiral conformal quantum field theories. The resulting models may not be strictly local, but they contain observables localized in spacelike wedges. It is shown that the scattering theory for waves in two dimensions, due to Buchholz, is still valid under these weaker assumptions. The concepts of interaction and asymptotic completeness, provided by this theory, are adopted in the present investigation.
Communications in Mathematical Physics | 2008
Wojciech Dybalski
It is shown that only one vacuum state can be prepared with a finite amount of energy and it appears, in particular, as a limit of physical states under large timelike translations in any theory which satisfies a phase space condition proposed in this work. This new criterion, related to the concept of additivity of energy over isolated subsystems, is verified in massive free field theory. The analysis entails very detailed results about the momentum transfer of local operators in this model.
Communications in Mathematical Physics | 2014
Wojciech Dybalski; Christian Gérard
We formulate a generalized concept of asymptotic completeness and show that it holds in any Haag–Kastler quantum field theory with an upper and lower mass gap. It remains valid in the presence of pairs of oppositely charged particles in the vacuum sector, which invalidate the conventional property of asymptotic completeness. Our result can be restated as a criterion characterizing a class of theories with complete particle interpretation in the conventional sense. This criterion is formulated in terms of certain asymptotic observables (Araki–Haag detectors) whose existence, as strong limits of their approximating sequences, is our main technical result. It is proven with the help of a novel propagation estimate, which is also relevant to scattering theory of quantum mechanical dispersive systems.
Communications in Mathematical Physics | 2010
Wojciech Dybalski
This paper presents a general framework for a refined spectral analysis of a group of isometries acting on a Banach space, which extends the spectral theory of Arveson. The concept of a continuous Arveson spectrum is introduced and the corresponding spectral subspace is defined. The absolutely continuous and singular-continuous parts of this spectrum are specified. Conditions are given, in terms of the transposed action of the group of isometries, which guarantee that the pure-point and continuous subspaces span the entire Banach space. In the case of a unitarily implemented group of automorphisms, acting on a C*-algebra, relations between the continuous spectrum of the automorphisms and the spectrum of the implementing group of unitaries are found. The group of spacetime translation automorphisms in quantum field theory is analyzed in detail. In particular, it is shown that the structure of its continuous spectrum is relevant to the problem of existence of (infra-)particles in a given theory.
Journal of Statistical Physics | 2014
Wojciech Dybalski; Alessandro Pizzo
We construct two-electron scattering states and verify their tensor product structure in the infrared-regular massless Nelson model. The proof follows the lines of Haag-Ruelle scattering theory: Scattering state approximants are defined with the help of two time-dependent renormalized creation operators of the electrons acting on the vacuum. They depend on the ground state wave functions of the (single-electron) fiber Hamiltonians with infrared cut-off. The convergence of these approximants as t→∞ is shown with the help of Cook’s method combined with a non-stationary phase argument. The removal of the infrared cut-off in the limit t→∞ requires sharp estimates on the derivatives of these ground state wave functions w.r.t. electron and photon momenta, with mild dependence on the infrared cut-off. These key estimates, which carry information about the localization of the electrons in space, are obtained in a companion paper with the help of iterative analytic perturbation theory. Our results hold in the weak coupling regime.
Annales Henri Poincaré | 2015
Wojciech Dybalski; Jacob Schach Møller
We show asymptotic completeness of two-body scattering for a class of translation invariant models describing a single quantum particle (the electron) linearly coupled to a massive scalar field (bosons). Our proof is based on a recently established Mourre estimate for these models. In contrast to previous approaches, it requires no number cutoff, no restriction on the particle–field coupling strength, and no restriction on the magnitude of total momentum. Energy, however, is restricted by the two-boson threshold, admitting only scattering of a dressed electron and a single asymptotic boson. The class of models we consider includes the UV-cutoff Nelson and polaron models. Although this paper is a part of a larger investigation, the presentation is self-contained.
Letters in Mathematical Physics | 2017
Sabina Alazzawi; Wojciech Dybalski
We consider a Haag–Kastler net in a positive energy representation, admitting massive Wigner particles and asymptotic fields of massless bosons. We show that massive single-particle states are always vacua of the massless asymptotic fields. Our argument is based on the Mean Ergodic Theorem in a certain extended Hilbert space. As an application of this result, we construct the outgoing isometric wave operator for Compton scattering in QED in a class of representations recently proposed by Buchholz and Roberts. In the course of this analysis, we use our new technique to further simplify scattering theory of massless bosons in the vacuum sector. A general discussion of the status of the infrared problem in the setting of Buchholz and Roberts is given.
Communications in Mathematical Physics | 2014
Wojciech Dybalski; Christian Gérard
We consider the problem of existence of asymptotic observables in local relativistic theories of massive particles. Let
Communications in Mathematical Physics | 2012
Wojciech Dybalski; Yoh Tanimoto