Wojciech G. Garbacz
University of Pittsburgh
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Wojciech G. Garbacz.
Biochimica et Biophysica Acta | 2015
Janice M. Huss; Wojciech G. Garbacz; Wen Xie
The estrogen-related receptors (ERRs) comprise a small group of orphan nuclear receptor transcription factors. The ERRα and ERRγ isoforms play a central role in the regulation of metabolic genes and cellular energy metabolism. Although less is known about ERRβ, recent studies have revealed the importance of this isoform in the maintenance of embryonic stem cell pluripotency. Thus, ERRs are essential to many biological processes. The development of several ERR knockout and overexpression models and the application of advanced functional genomics have allowed rapid advancement of our understanding of the physiology regulated by ERR pathways. Moreover, it has enabled us to begin to delineate the distinct programs regulated by ERRα and ERRγ that have overlapping effects on metabolism and growth. The current review primarily focuses on the physiologic roles of ERR isoforms related to their metabolic regulation; therefore, the ERRα and ERRγ are discussed in the greatest detail. We emphasize findings from gain- and loss-of-function models developed to characterize ERR control of skeletal muscle, heart and musculoskeletal physiology. These models have revealed that coordinating metabolic capacity with energy demand is essential for seemingly disparate processes such as muscle differentiation and hypertrophy, innate immune function, thermogenesis, and bone remodeling. Furthermore, the models have revealed that ERRα- and ERRγ-deficiency in mice accelerates progression of pathologic processes and implicates ERRs as etiologic factors in disease. We highlight the human diseases in which ERRs and their downstream metabolic pathways are perturbed, including heart failure and diabetes. While no natural ligand has been identified for any of the ERR isoforms, the potential for using synthetic small molecules to modulate their activity has been demonstrated. Based on our current understanding of their transcriptional mechanisms and physiologic relevance, the ERRs have emerged as potential therapeutic targets for treatment of osteoporosis, muscle atrophy, insulin resistance and heart failure in humans.
Hepatology | 2015
Peipei Lu; Jiong Yan; Ke Liu; Wojciech G. Garbacz; Pengcheng Wang; Meishu Xu; Xiaochao Ma; Wen Xie
The aryl hydrocarbon receptor (AHR), also known as the dioxin receptor, was originally characterized as a xenobiotic receptor that senses xenotoxicants. We investigated the endobiotic and hepatic role of AHR in fatty liver and energy metabolism and identified the endocrine factor that mediates the metabolic function of AHR. Wild‐type and liver‐specific constitutively activated human AHR transgenic mice were used to investigate the role of AHR in fatty liver and energy homeostasis. Adenovirus expressing short hairpin RNA targeting fibroblast growth factor 21 (FGF21) were used to determine the involvement of FGF21 in the metabolic effect of AHR. We showed that, despite their severe fatty liver, the transgenic mice were protected from diet‐induced obesity and type 2 diabetes. We identified the endocrine hormone FGF21 as a mediator for the metabolic benefit of AHR and established FGF21 as a direct transcriptional target of AHR. Interestingly, the transactivation of FGF21 by AHR contributed to both hepatic steatosis and systemic insulin hypersensitivity, both of which were largely abolished upon FGF21 knockdown. Conclusions: The AHR‐FGF21 endocrine signaling pathway establishes AHR as a pivotal environmental modifier that integrates signals from chemical exposure in the regulation of lipid and energy metabolism. (Hepatology 2015;61:1908–1919)
Molecular and Cellular Biology | 2016
Wojciech G. Garbacz; Peipei Lu; Tricia M. Miller; Samuel M. Poloyac; Nicholas S. Eyre; Graham Mayrhofer; Meishu Xu; Songrong Ren; Wen Xie
ABSTRACT The common complications in obesity and type 2 diabetes include hepatic steatosis and disruption of glucose-glycogen homeostasis, leading to hyperglycemia. Fatty acid translocase (FAT/CD36), whose expression is inducible in obesity, is known for its function in fatty acid uptake. Previous work by us and others suggested that CD36 plays an important role in hepatic lipid homeostasis, but the results have been conflicting and the mechanisms were not well understood. In this study, by using CD36-overexpressing transgenic (CD36Tg) mice, we uncovered a surprising function of CD36 in regulating glycogen homeostasis. Overexpression of CD36 promoted glycogen synthesis, and as a result, CD36Tg mice were protected from fasting hypoglycemia. When challenged with a high-fat diet (HFD), CD36Tg mice showed unexpected attenuation of hepatic steatosis, increased very low-density lipoprotein (VLDL) secretion, and improved glucose tolerance and insulin sensitivity. The HFD-fed CD36Tg mice also showed decreased levels of proinflammatory hepatic prostaglandins and 20-hydroxyeicosatetraenoic acid (20-HETE), a potent vasoconstrictive and proinflammatory arachidonic acid metabolite. We propose that CD36 functions as a protective metabolic sensor in the liver under lipid overload and metabolic stress. CD36 may be explored as a valuable therapeutic target for the management of metabolic syndrome.
Journal of Hepatology | 2015
Bingfang Hu; Yan Guo; Wojciech G. Garbacz; Mengxi Jiang; Meishu Xu; Hai Huang; Allan Tsung; Timothy R. Billiar; Sadeesh K. Ramakrishnan; Yatrik M. Shah; Karen S.L. Lam; Min Huang; Wen Xie
BACKGROUND & AIMS Fatty acid binding protein 4 (FABP4) has been known as a mediator of inflammatory response in the macrophages and adipose tissue, but its hepatic function is poorly understood. The goal of this study is to investigate the role of FABP4 in liver ischemia/reperfusion (I/R), a clinical condition that involves both hypoxia and inflammation. METHODS To examine the I/R regulation of FABP4, mice were subjected to I/R surgery before being measured for FABP4 gene expression. Both loss-of-function (by using a pharmacological FABP4 inhibitor) and gain-of-function (by adenoviral overexpression of FABP4) were used to determine the functional relevance of FABP4 expression and its regulation during I/R. To determine the hypoxia responsive regulation of FABP4, primary mouse hepatocytes were exposed to hypoxia. The FABP4 gene promoter was cloned and its regulation by hypoxia inducible factor 1α (HIF-1α) was characterized by luciferase reporter gene, electrophoretic mobility shift, and chromatin immunoprecipitation assays. RESULTS We found that the hepatic expression of FABP4 was markedly induced by I/R. At the functional level, pharmacological inhibition of FABP4 alleviated the I/R injury, whereas adenoviral overexpression of FABP4 sensitized mice to I/R injury. We also showed that exposure of primary hepatocytes to hypoxia or transgenic overexpression of HIF-1α in the mouse liver was sufficient to induce the expression of FABP4. Our promoter analysis established FABP4 as a novel transcriptional target of HIF-1α. CONCLUSIONS FABP4 is a hypoxia inducible gene that sensitizes mice to liver I/R injury. FABP4 may represent a novel therapeutic target, and FABP4 inhibitors may be used as therapeutic agents to manage hepatic I/R injury.
Endocrinology | 2017
Wojciech G. Garbacz; Mengxi Jiang; Meishu Xu; Jun Yamauchi; H. Henry Dong; Wen Xie
Estrogen sulfotransferase catalyzes the sulfoconjugation and deactivation of estrogens. Previously, we showed that loss of Est in male ob/ob mice, but not in female ob/ob mice, exacerbated the diabetic phenotype, but the underlying mechanism was unclear. In this study, we show that transgenic reconstitution of Est in the adipose tissue, but not in the liver, attenuated diabetic phenotype in Est-deficient ob/ob mice (obe mice). Mechanistically, adipose reconstitution of Est in obe mice (oae mice) resulted in reduced local and systemic inflammation, improved insulin sensitivity, and increased energy expenditure. At the molecular level, adipose induction of lipocalin-2 (Lcn2) in oae males may have contributed to the inhibition of inflammation because the level of Lcn2 was negatively associated with tumor necrosis factor (Tnf) α expression, and treatment of differentiated adipocytes with Lcn2 antagonized Tnfα-responsive inhibition of insulin signaling. The metabolic benefit of adipose reconstitution of Est was sex specific, because adipose reconstitution of Est in obe females had little effect. Interestingly, despite their improved metabolic functions, obe male mice with reconstituted Est in their adipose tissue failed to ameliorate the impairment of the structure and function of the pancreatic islets. In summary, our study uncovers a crucial adipose- and male-specific role of Est in maintaining the whole-body energy homeostasis.
Hepatology | 2015
Peipei Lu; Jiong Yan; Ke Liu; Wojciech G. Garbacz; Pengcheng Wang; Meishu Xu; Xiaochao Ma; Wen Xie
The aryl hydrocarbon receptor (AHR), also known as the dioxin receptor, was originally characterized as a xenobiotic receptor that senses xenotoxicants. We investigated the endobiotic and hepatic role of AHR in fatty liver and energy metabolism and identified the endocrine factor that mediates the metabolic function of AHR. Wild‐type and liver‐specific constitutively activated human AHR transgenic mice were used to investigate the role of AHR in fatty liver and energy homeostasis. Adenovirus expressing short hairpin RNA targeting fibroblast growth factor 21 (FGF21) were used to determine the involvement of FGF21 in the metabolic effect of AHR. We showed that, despite their severe fatty liver, the transgenic mice were protected from diet‐induced obesity and type 2 diabetes. We identified the endocrine hormone FGF21 as a mediator for the metabolic benefit of AHR and established FGF21 as a direct transcriptional target of AHR. Interestingly, the transactivation of FGF21 by AHR contributed to both hepatic steatosis and systemic insulin hypersensitivity, both of which were largely abolished upon FGF21 knockdown. Conclusions: The AHR‐FGF21 endocrine signaling pathway establishes AHR as a pivotal environmental modifier that integrates signals from chemical exposure in the regulation of lipid and energy metabolism. (Hepatology 2015;61:1908–1919)
Molecular Pharmacology | 2018
Wojciech G. Garbacz; Hirdesh Uppal; Jiong Yan; Meishu Xu; Songrong Ren; Donna B. Stolz; Min Huang; Wen Xie
Cholesterol is essential for numerous biologic functions and processes, but an excess of intracellular cholesterol can be toxic. Intestinal cholesterol absorption is a major determinant of plasma cholesterol level. The liver X receptor (LXR) is a nuclear receptor known for its activity in cholesterol efflux and reverse cholesterol transport. In this study, we uncovered a surprising function of LXR in intestinal cholesterol absorption and toxicity. Genetic or pharmacologic activation of LXRα-sensitized mice to a high-cholesterol diet (HCD) induced intestinal toxicity and tissue damage, including the disruption of enterocyte tight junctions, whereas the same HCD caused little toxicity in the absence of LXR activation. The gut toxicity in HCD-fed LXR-KI mice may have been accounted for by the increased intestinal cholesterol absorption and elevation of enterocyte and systemic levels of free cholesterol. The increased intestinal cholesterol absorption preceded the gut toxicity, suggesting that the increased absorption was not secondary to tissue damage. The heightened sensitivity to HCD in the HCD-fed LXRα-activated mice appeared to be intestine-specific because the liver was not affected despite activation of the same receptor in this tissue. Moreover, heightened sensitivity to HCD cannot be reversed by ezetimibe, a Niemann-Pick C1-like 1 inhibitor that inhibits intestinal cholesterol absorption, suggesting that the increased cholesterol absorption in LXR-activated intestine is mediated by a mechanism that has yet to be defined.
Archive | 2017
Wojciech G. Garbacz; Mengxi Jiang; Wen Xie
Sulfonation and desulfation are two opposing processes that represent an important layer of regulation of estrogenic activity via ligand supplies. Enzymatic activities of families of enzymes, known as sulfotransferases and sulfatases, lead to structural and functional changes of the steroids, thyroids, xenobiotics, and neurotransmitters. Estrogen sulfotransferase (EST) and steroid sulfatase (STS) represent negative and positive regulation of the estrogen activity, respectively. This is because EST-mediated sulfation deactivates estrogens, whereas STS-mediated desulfation converts the inactive estrogen sulfates to active estrogens. In addition to the known functions of estrogens, EST and STS in reproductive processes, regulation of estrogens and other signal molecules especially at the local tissue levels has gained increased attention in the context of metabolic disease in recent years. EST expression is detectable in the subcutaneous adipose tissue in both obese women and men, and the expression of EST is markedly induced in the livers of rodent models of obesity and type 2 diabetes. STS was found to be upregulated in patients with chronic inflammatory liver diseases. Interestingly, the tissue distribution and the transcriptional regulation of EST and STS exhibit obvious sex and species specificity. EST ablation produces completely opposite metabolic phenotype in female and male obese mice. Adipogenesis is also differentially regulated by EST in murine and human adipocytes. This chapter focuses on the recent progress in our understanding of the expression and regulation EST and STS in the context of metabolic homeostasis.
Hepatology | 2015
Peipei Lu; Jiong Yan; Ke Liu; Wojciech G. Garbacz; Pengcheng Wang; Meishu Xu; Xiaochao Ma; Wen Xie
The aryl hydrocarbon receptor (AHR), also known as the dioxin receptor, was originally characterized as a xenobiotic receptor that senses xenotoxicants. We investigated the endobiotic and hepatic role of AHR in fatty liver and energy metabolism and identified the endocrine factor that mediates the metabolic function of AHR. Wild‐type and liver‐specific constitutively activated human AHR transgenic mice were used to investigate the role of AHR in fatty liver and energy homeostasis. Adenovirus expressing short hairpin RNA targeting fibroblast growth factor 21 (FGF21) were used to determine the involvement of FGF21 in the metabolic effect of AHR. We showed that, despite their severe fatty liver, the transgenic mice were protected from diet‐induced obesity and type 2 diabetes. We identified the endocrine hormone FGF21 as a mediator for the metabolic benefit of AHR and established FGF21 as a direct transcriptional target of AHR. Interestingly, the transactivation of FGF21 by AHR contributed to both hepatic steatosis and systemic insulin hypersensitivity, both of which were largely abolished upon FGF21 knockdown. Conclusions: The AHR‐FGF21 endocrine signaling pathway establishes AHR as a pivotal environmental modifier that integrates signals from chemical exposure in the regulation of lipid and energy metabolism. (Hepatology 2015;61:1908–1919)
Molecular and Cellular Biology | 2018
Yuhan Bi; Xiongjie Shi; Junjie Zhu; Xiudong Guan; Wojciech G. Garbacz; Yixian Huang; Li Gao; Jiong Yan; Meishu Xu; Songrong Ren; Shunlin Ren; Yulan Liu; Xiaochao Ma; Song Li; Wen Xie