Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wojciech Krzeptowski is active.

Publication


Featured researches published by Wojciech Krzeptowski.


Neuroscience | 2013

The key involvement of estrogen receptor β and G-protein-coupled receptor 30 in the neuroprotective action of daidzein.

Małgorzata Kajta; Joanna Rzemieniec; Ewa Litwa; Władysław Lasoń; M. Lenartowicz; Wojciech Krzeptowski; Anna K. Wójtowicz

Phytoestrogens have received considerable attention because they provide an array of beneficial effects, such as neuroprotection. To better understand the molecular and functional link between phytoestrogens and classical as well as membrane estrogen receptors (ERs), we investigated the effect of daidzein on the glutamate-mediated apoptotic pathway. Our study demonstrated that daidzein (0.1-10μM) inhibited the pro-apoptotic and neurotoxic effects caused by glutamate treatment. Hippocampal, neocortical and cerebellar tissues responded to the inhibitory action of daidzein on glutamate-activated caspase-3 and lactate dehydrogenase (LDH) release in a similar manner. Biochemical data were supported at the cellular level by Hoechst 33342 and calcein AM staining. The sensitivity of neuronal cells to daidzein-mediated protection was most prominent in hippocampal cultures at an early stage of development 7th day in vitro. A selective estrogen receptor β (ERβ) antagonist, 4-[2-phenyl-5,7-bis(trifluoromethyl)pyrazolo[1,5,-a]pyrimidin-3-yl]phenol (PHTPP), and a selective G-protein-coupled receptor 30 (GPR30) antagonist, 3aS(∗),4R(∗),9bR(∗))-4-(6-Bromo-1,3-benzodioxol-5-yl)-3a,4,5,9b-3H-cyclopenta[c]quinoline (G15), reversed the daidzein-mediated inhibition of glutamate-induced loss of membrane mitochondrial potential, caspase-3 activity, and LDH release. A selective ERα antagonist, methyl-piperidino-pyrazole (MPP), did not influence any anti-apoptotic effect of daidzein. However, a high-affinity estrogen receptor antagonist, 7α,17β-[9-[(4,4,5,5,5-pentafluoropentyl)sulfinyl]nonyl]estra-1,3,5(10)-triene-3,17-diol (ICI) 182,780, and a selective GPR30 agonist, (±)-1-[(3aR(∗),4S(∗),9bS(∗))-4-(6-bromo-1,3-benzodioxol-5-yl)-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinolin-8-yl]-ethanone (G1), intensified the protective action of daidzein against glutamate-induced loss of membrane mitochondrial potential and LDH release. In siRNA ERβ- and siRNA GPR30-transfected cells, daidzein did not inhibit the glutamate-induced effects. Twenty-four hour exposure to glutamate did not affect the cellular distribution of ERβ and GPR30, but caused greater than 100% increase in the levels of the receptors. Co-treatment with daidzein decreased the level of ERβ without significant changing of the GPR30 protein level. Here, we elucidated neuroprotective effects of daidzein at low micromolar concentrations and demonstrated that the phytoestrogens may exert their effects through novel extranuclear GPR30 and the classical transcriptionally acting ERβ. These studies uncover key roles of the ERβ and GPR30 intracellular signaling pathways in mediating the anti-apoptotic action of daidzein and may provide insight into new strategies to treat or prevent neural degeneration.


Journal of Insect Physiology | 2009

Cyclical expression of Na+/K+-ATPase in the visual system of Drosophila melanogaster

Jolanta Górska-Andrzejak; Paul M. Salvaterra; Ian A. Meinertzhagen; Wojciech Krzeptowski; Alicja Görlich; Elzbieta Pyza

In the first (lamina) and second (medulla) optic neuropils of Drosophila melanogaster, sodium pump subunit expression changes during the day and night, controlled by a circadian clock. We examined alpha-subunit expression from the intensity of immunolabeling. For the beta-subunit, encoded by Nervana 2 (Nrv2), we used Nrv2-GAL4 to drive expression of GFP, and measured the resultant fluorescence in whole heads and specific optic lobe cells. All optic neuropils express the alpha-subunit, highest at the beginning of night in both lamina and medulla in day/night condition and the oscillation was maintained in constant darkness. This rhythm was lacking in the clock arrhythmic per(0) mutant. GFP driven by Nrv2 was mostly detected in glial cells, mainly in the medulla. There, GFP expression occurs in medulla neuropil glia (MNGl), which express the clock gene per, and which closely contact the terminals of clock neurons immunoreactive to pigment dispersing factor. GFP fluorescence exhibited circadian oscillation in whole heads from Nrv2-GAL4+UAS-S65T-GFP flies, although significant GFP oscillations were lacking in MNGl, as they were for both subunit mRNAs in whole-head homogenates. In the dissected brain tissues, however, the mRNA of the alpha-subunit showed a robust daily rhythm in concentration changes while changes in the beta-subunit mRNA were weaker and not statistically significant. Thus in the brain, the genes for the sodium pump subunits, at least the one encoding the alpha-subunit, seem to be clock-controlled and the abundance of their corresponding proteins mirrors daily changes in mRNA, showing cyclical accumulation in cells.


Biochemical Journal | 2013

Ferroportin expression in haem oxygenase 1-deficient mice

Rafał R. Starzyński; François Canonne-Hergaux; Małgorzata Lenartowicz; Wojciech Krzeptowski; Alexandra Willemetz; Agnieszka Styś; Joanna Bierła; Piotr Pietrzak; Tomasz Dziaman; Paweł Lipiński

HO1 (haem oxygenase 1) and Fpn (ferroportin) are key proteins for iron recycling from senescent red blood cells and therefore play a major role in controlling the bioavailability of iron for erythropoiesis. Although important aspects of iron metabolism in HO1-deficient (Hmox1-/-) mice have already been revealed, little is known about the regulation of Fpn expression and its role in HO1 deficiency. In the present study, we characterize the cellular and systemic factors influencing Fpn expression in Hmox1-/- bone marrow-derived macrophages and in the liver and kidney of Hmox1-/- mice. In Hmox1-/- macrophages, Fpn protein was relatively highly expressed under high levels of hepcidin in culture medium. Similarly, despite high hepatic hepcidin expression, Fpn is still detected in Kupffer cells and is also markedly enhanced at the basolateral membrane of the renal tubules of Hmox1-/- mice. Through the activity of highly expressed Fpn, epithelial cells of the renal tubules probably take over the function of impaired system of tissue macrophages in recycling iron accumulated in the kidney. Moreover, although we have found increased expression of FLVCR (feline leukaemia virus subgroup C receptor), a haem exporter, in the kidneys of Hmox1-/- mice, haem level was increased in these organs. Furthermore, we show that iron/haem-mediated toxicity are responsible for renal injury documented in the kidneys of Hmox1-/- mice.


The Journal of Steroid Biochemistry and Molecular Biology | 2014

Apoptotic and neurotoxic actions of 4-para-nonylphenol are accompanied by activation of retinoid X receptor and impairment of classical estrogen receptor signaling

Ewa Litwa; Joanna Rzemieniec; Agnieszka Wnuk; Władysław Lasoń; Wojciech Krzeptowski; Małgorzata Kajta

4-para-Nonylphenol (NP) is a non-ionic surfactant that has widespread and uncontrolled distribution in the environment. Little is known, however, about its actions on neuronal cells during critical developmental periods. This study aimed to investigate the mechanisms underlying the apoptotic and toxic actions of NP on mouse embryonic neuronal cells and the possible interactions of NP with estrogen receptor (ER)- and retinoid X receptor (RXR)-mediated intracellular signaling. Treatment of mouse hippocampal neuronal cell cultures with NP (5 and 10μM) induced apoptotic and neurotoxic effects. The 2 and 7 day-old mouse hippocampal cultures were vulnerable to 5 and 10μM NP, whereas 12 day-old cultures responded only to the highest concentration of NP, thus suggesting an age-dependent action of the chemical on neuronal cells. The use of specific inhibitors did not support the involvement of calpains in NP-induced apoptosis, but indicated caspase-8- and caspase-9-dependent effects of NP. Specific ER antagonists MPP and PHTPP potentiated the NP-induced loss of mitochondrial membrane potential and increase in lactate dehydrogenase (LDH) release whereas, ER agonists PPT and DPN inhibited these effects. RXR antagonist HX531 diminished the NP-evoked loss of mitochondrial membrane potential, the activity of caspase-3 and LDH release. In addition, exposure to NP inhibited ERα- and ERβ-specific immunofluorescence but stimulated RXR-specific immunolabeling in mouse hippocampal cells. In conclusion, our study demonstrated that the apoptotic and toxic actions of NP on neuronal cells in early development is accompanied by an impairment of ER- and stimulation of RXR-mediated signaling pathways. Taking into account NP-induced alterations in mRNA expression levels of particular types of RXRs, we suggest that NP affected mainly RXRα and RXRβ, but not RXRγ signaling.


The Journal of Steroid Biochemistry and Molecular Biology | 2016

RXRα, PXR and CAR xenobiotic receptors mediate the apoptotic and neurotoxic actions of nonylphenol in mouse hippocampal cells.

Ewa Litwa; Joanna Rzemieniec; Agnieszka Wnuk; Władysław Lasoń; Wojciech Krzeptowski; Małgorzata Kajta

In the present study, we investigated the role of the retinoid X receptor (RXR), the pregnane X receptor (PXR) and the constitutive androstane receptor (CAR), in the apoptotic and toxic effects of nonylphenol in mouse primary neuronal cell cultures. Our study demonstrated that nonylphenol activated caspase-3 and induced lactate dehydrogenase (LDH) release in hippocampal cells, which was accompanied by an increase in the mRNA expression and protein levels of RXRα, PXR and CAR. Nonylphenol stimulated Rxra, Pxr, and Car mRNA expression. These effects were followed by increase in the protein levels of particular receptors. Immunofluorescence labeling revealed the cellular distribution of RXRα, PXR and CAR in hippocampal neurons in response to nonylphenol, shortening of neurites and cytoplasmic shrinking, as indicated by MAP2 staining. It also showed NP-induced translocation of receptor-specific immunofluorescence from cytoplasm to the nucleus. The use of specific siRNAs demonstrated that Rxra-, Pxr-, and Car-siRNA-transfected cells were less vulnerable to nonylphenol-induced activation of caspase-3 and LDH, thus confirming the key involvement of RXRα/PXR/CAR signaling pathways in the apoptotic and neurotoxic actions of nonylphenol. These new data give prospects for the targeting xenobiotic nuclear receptors to protect the developing nervous system against endocrine disrupting chemicals.


Neurotoxicity Research | 2016

The Crucial Involvement of Retinoid X Receptors in DDE Neurotoxicity

Agnieszka Wnuk; Joanna Rzemieniec; Ewa Litwa; Władysław Lasoń; Wojciech Krzeptowski; Anna K. Wójtowicz; Małgorzata Kajta

Dichlorodiphenyldichloroethylene (DDE) is a primary environmental and metabolic degradation product of the pesticide dichlorodiphenyltrichloroethane (DDT). It is one of the most toxic compounds belonging to organochlorines. DDE has never been commercially produced; however, the parent pesticide DDT is still used in some developing countries for disease-vector control of malaria. DDT and DDE remain in the environment because these chemicals are resistant to degradation and bioaccumulate in the food chain. Little is known, however, about DDE toxicity during the early stages of neural development. The results of the present study demonstrate that DDE induced a caspase-3-dependent apoptosis and caused the global DNA hypomethylation in mouse embryonic neuronal cells. This study also provided evidence for DDE-isomer-non-specific alterations of retinoid X receptor α (RXRα)- and retinoid X receptor β (RXRβ)-mediated intracellular signaling, including changes in the levels of the receptor mRNAs and changes in the protein levels of the receptors. DDE-induced stimulation of RXRα and RXRβ was verified using selective antagonist and specific siRNAs. Co-localization of RXRα and RXRβ was demonstrated using confocal microscopy. The apoptotic action of DDE was supported at the cellular level through Hoechst 33342 and calcein AM staining experiments. In conclusion, the results of the present study demonstrated that the stimulation of RXRα- and RXRβ-mediated intracellular signaling plays an important role in the propagation of DDE-induced apoptosis during early stages of neural development.


Frontiers in Physiology | 2014

External and circadian inputs modulate synaptic protein expression in the visual system of Drosophila melanogaster

Wojciech Krzeptowski; Jolanta Górska-Andrzejak; Ewelina Kijak; Alicja Görlich; Elżbieta M. Guzik; Gareth Moore; Elzbieta Pyza

In the visual system of Drosophila melanogaster the retina photoreceptors form tetrad synapses with the first order interneurons, amacrine cells and glial cells in the first optic neuropil (lamina), in order to transmit photic and visual information to the brain. Using the specific antibodies against synaptic proteins; Bruchpilot (BRP), Synapsin (SYN), and Disc Large (DLG), the synapses in the distal lamina were specifically labeled. Then their abundance was measured as immunofluorescence intensity in flies held in light/dark (LD 12:12), constant darkness (DD), and after locomotor and light stimulation. Moreover, the levels of proteins (SYN and DLG), and mRNAs of the brp, syn, and dlg genes, were measured in the flys head and brain, respectively. In the head we did not detect SYN and DLG oscillations. We found, however, that in the lamina, DLG oscillates in LD 12:12 and DD but SYN cycles only in DD. The abundance of all synaptic proteins was also changed in the lamina after locomotor and light stimulation. One hour locomotor stimulations at different time points in LD 12:12 affected the pattern of the daily rhythm of synaptic proteins. In turn, light stimulations in DD increased the level of all proteins studied. In the case of SYN, however, this effect was observed only after a short light pulse (15 min). In contrast to proteins studied in the lamina, the mRNA of brp, syn, and dlg genes in the brain was not cycling in LD 12:12 and DD, except the mRNA of dlg in LD 12:12. Our earlier results and obtained in the present study showed that the abundance of BRP, SYN and DLG in the distal lamina, at the tetrad synapses, is regulated by light and a circadian clock while locomotor stimulation affects their daily pattern of expression. The observed changes in the level of synaptic markers reflect the circadian plasticity of tetrad synapses regulated by the circadian clock and external inputs, both specific and unspecific for the visual system.


Journal of Experimental Zoology | 2010

Developmental Changes in the Expression of the Atp7a Gene in the Liver of Mice During the Postnatal Period

Małgorzata Lenartowicz; Krzysztof Wieczerzak; Wojciech Krzeptowski; Paulina Dobosz; Paweł Grzmil; Rafał R. Starzyński; Paweł Lipiński

In all living organisms trace element metabolism and transport are closely regulated at the genetic level. Copper is one of the essential microelements required for normal growth and development. The main organ in mammals involved in copper metabolism is the liver. It is known that copper metabolism in the liver is controlled by ATP7B, a P-type ATP-ase encoded by the Atp7b gene. However, little is known about the expression and function of the second important P-type ATP-ase, ATP7A encoded by the Atp7a gene. In this study we investigated the expression of the Atp7a gene in the liver during postnatal development in mice. We analyzed expression of Atp7a gene in the livers from neonatal (P.05), young (P14) and adult (P240) mice using RT-PCR and real-time PCR method. We found a transcript of the Atp7a gene in the liver of all investigated animals. Moreover, we found that the expression of the Atp7a gene in the liver in mice is age-dependent and decreases during postnatal development. Interestingly, the Atp7a expression in adult mice is very low in comparison with neonatal and young animals. Western blot analysis revealed that Atp7a is expressed not only at mRNA level but also at the protein level in the liver of all investigated animals. The expression of Atp7a gene and ATP7A protein was also confirmed in primary hepatocytes from adult mouse. Demonstration of the hepatic Atp7a gene expression may shed light on new aspects of copper metabolism in the liver in mammals.


Gene Expression Patterns | 2011

Alterations in the expression of the Atp7a gene in the early postnatal development of the mosaic mutant mice (Atp7amo-ms) – An animal model for Menkes disease

Małgorzata Lenartowicz; Rafał R. Starzyński; Krzysztof Wieczerzak; Wojciech Krzeptowski; Paweł Lipiński; Józefa Styrna

Copper is a trace element that is essential for the normal growth and development of all living organisms. In mammals, the ATP7A Cu-transporting ATPase is a key protein that is required for the maintenance of copper homeostasis. In both humans and mice, the ATP7A protein is coded by the X-linked ATP7A/Atp7a gene. Disturbances in copper metabolism caused by mutations in the ATP7A/Atp7a gene lead to severe metabolic syndromes Menkes disease in humans and the lethal mottled phenotype in mice. Mosaic is one of numerous mottled mutations and may serve as a model for a severe Menkes disease variant. In Menkes patients, mutations in the ATP7A gene often result in a decreased level of the normal ATP7A protein. The aim of this study was to analyse the expression of the Atp7a gene in mosaic mutants in early postnatal development, a critical period for starting copper supplementation therapy in both Menkes patients and mutant mice. Using real-time quantitative RT-PCR, we analysed the expression of the Atp7a gene in the brain, kidney and liver of newborn (P0.5) and suckling (P14) mice. Our results indicate that in mosaic P0.5 mutants, the Atp7a mRNA level is decreased in all analysed organs in comparison with wild-type animals. In two week-old mutants, a significant decrease was observed only in the kidney. In contrast, their hepatic level of Atp7a tended to be higher than in wild-type mice. We speculate that disturbance in the expression of the Atp7a gene and, consequently, change in the copper concentration of the organs, may contribute to the early fatal outcome of mosaic males.


Frontiers in Molecular Neuroscience | 2015

Mottled Mice and Non-Mammalian Models of Menkes Disease

Małgorzata Lenartowicz; Wojciech Krzeptowski; Paweł Lipiński; Paweł Grzmil; Rafał R. Starzyński; Olga Pierzchała; Lisbeth Birk Møller

Menkes disease is a multi-systemic copper metabolism disorder caused by mutations in the X-linked ATP7A gene and characterized by progressive neurodegeneration and severe connective tissue defects. The ATP7A protein is a copper (Cu)-transporting ATPase expressed in all tissues and plays a critical role in the maintenance of copper homeostasis in cells of the whole body. ATP7A participates in copper absorption in the small intestine and in copper transport to the central nervous system (CNS) across the blood-brain-barrier (BBB) and blood–cerebrospinal fluid barrier (BCSFB). Cu is essential for synaptogenesis and axonal development. In cells, ATP7A participates in the incorporation of copper into Cu-dependent enzymes during the course of its maturation in the secretory pathway. There is a high degree of homology (>80%) between the human ATP7A and murine Atp7a genes. Mice with mutations in the Atp7a gene, called mottled mutants, are well-established and excellent models of Menkes disease. Mottled mutants closely recapitulate the Menkes phenotype and are invaluable for studying Cu-metabolism. They provide useful models for exploring and testing new forms of therapy in Menkes disease. Recently, non-mammalian models of Menkes disease, Drosophila melanogaster and Danio rerio mutants were used in experiments which would be technically difficult to carry out in mammals.

Collaboration


Dive into the Wojciech Krzeptowski's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joanna Rzemieniec

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Małgorzata Kajta

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Paweł Lipiński

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Agnieszka Wnuk

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Ewa Litwa

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge