Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wolfgang F. Bluhm is active.

Publication


Featured researches published by Wolfgang F. Bluhm.


Acta Crystallographica Section D-biological Crystallography | 2002

The Protein Data Bank

Helen M. Berman; Tammy Battistuz; Talapady N. Bhat; Wolfgang F. Bluhm; Philip E. Bourne; Kyle Burkhardt; Zukang Feng; Gary L. Gilliland; Lisa Iype; Shri Jain; Phoebe Fagan; Jessica Marvin; David Padilla; Veerasamy Ravichandran; Bohdan Schneider; Narmada Thanki; Helge Weissig; John D. Westbrook; Christine Zardecki

The Protein Data Bank (PDB; http://www.rcsb.org/pdb/ ) is the single worldwide archive of structural data of biological macromolecules. This paper describes the goals of the PDB, the systems in place for data deposition and access, how to obtain further information, and near-term plans for the future development of the resource.


Nucleic Acids Research | 2011

The RCSB Protein Data Bank: redesigned web site and web services

Peter W. Rose; Bojan Beran; Chunxiao Bi; Wolfgang F. Bluhm; Dimitris Dimitropoulos; David S. Goodsell; Andreas Prlić; Martha Quesada; Gregory B. Quinn; John D. Westbrook; Jasmine Young; Benjamin T. Yukich; Christine Zardecki; Helen M. Berman; Philip E. Bourne

The RCSB Protein Data Bank (RCSB PDB) web site (http://www.pdb.org) has been redesigned to increase usability and to cater to a larger and more diverse user base. This article describes key enhancements and new features that fall into the following categories: (i) query and analysis tools for chemical structure searching, query refinement, tabulation and export of query results; (ii) web site customization and new structure alerts; (iii) pair-wise and representative protein structure alignments; (iv) visualization of large assemblies; (v) integration of structural data with the open access literature and binding affinity data; and (vi) web services and web widgets to facilitate integration of PDB data and tools with other resources. These improvements enable a range of new possibilities to analyze and understand structure data. The next generation of the RCSB PDB web site, as described here, provides a rich resource for research and education.


Journal of Clinical Investigation | 1997

Overexpression of the rat sarcoplasmic reticulum Ca2+ ATPase gene in the heart of transgenic mice accelerates calcium transients and cardiac relaxation.

Huaping He; Frank Giordano; Randa Hilal-Dandan; Dong-Ju Choi; Howard A. Rockman; Patrick M. McDonough; Wolfgang F. Bluhm; Markus Meyer; M. R. Sayen; Eric A. Swanson; Wolfgang H. Dillmann

The Ca2+ ATPase of the sarcoplasmic reticulum (SERCA2) plays a dominant role in lowering cytoplasmic calcium levels during cardiac relaxation and reduction of its activity has been linked to delayed diastolic relaxation in hypothyroid and failing hearts. To determine the contractile alterations resulting from increased SERCA2 expression, we generated transgenic mice overexpressing a rat SERCA2 transgene. Characterization of a heterozygous transgenic mouse line (CJ5) showed that the amount of SERCA2 mRNA and protein increased 2. 6-fold and 1.2-fold, respectively, relative to control mice. Determination of the relative synthesis rate of SERCA2 protein showed an 82% increase. The mRNA levels of some of the other genes involved in calcium handling, such as the ryanodine receptor and calsequestrin, remained unchanged, but the mRNA levels of phospholamban and Na+/Ca2+ exchanger increased 1.4-fold and 1.8-fold, respectively. The increase in phospholamban or Na+/Ca2+ exchanger mRNAs did not, however, result in changes in protein levels. Functional analysis of calcium handling and contractile parameters in isolated cardiac myocytes indicated that the intracellular calcium decline (t1/2) and myocyte relengthening (t1/2) were accelerated by 23 and 22%, respectively. In addition, the rate of myocyte shortening was also significantly faster. In isolated papillary muscle from SERCA2 transgenic mice, the time to half maximum postrest potentiation was significantly shorter than in negative littermates. Furthermore, cardiac function measured in vivo, demonstrated significantly accelerated contraction and relaxation in SERCA2 transgenic mice that were further augmented in both groups with isoproterenol administration. Similar results were obtained for the contractile performance of myocytes isolated from a separate line (CJ2) of homozygous SERCA2 transgenic mice. Our findings suggest, for the first time, that increased SERCA2 expression is feasible in vivo and results in enhanced calcium transients, myocardial contractility, and relaxation that may have further therapeutic implications.


Nucleic Acids Research | 2012

The RCSB Protein Data Bank: new resources for research and education

Peter W. Rose; Chunxiao Bi; Wolfgang F. Bluhm; Cole Christie; Dimitris Dimitropoulos; Shuchismita Dutta; Rachel Kramer Green; David S. Goodsell; Andreas Prlić; Martha Quesada; Gregory B. Quinn; Alexander G. Ramos; John D. Westbrook; Jasmine Young; Christine Zardecki; Helen M. Berman; Philip E. Bourne

The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB) develops tools and resources that provide a structural view of biology for research and education. The RCSB PDB web site (http://www.rcsb.org) uses the curated 3D macromolecular data contained in the PDB archive to offer unique methods to access, report and visualize data. Recent activities have focused on improving methods for simple and complex searches of PDB data, creating specialized access to chemical component data and providing domain-based structural alignments. New educational resources are offered at the PDB-101 educational view of the main web site such as Author Profiles that display a researcher’s PDB entries in a timeline. To promote different kinds of access to the RCSB PDB, Web Services have been expanded, and an RCSB PDB Mobile application for the iPhone/iPad has been released. These improvements enable new opportunities for analyzing and understanding structure data.


Nucleic Acids Research | 2004

The RCSB Protein Data Bank: a redesigned query system and relational database based on the mmCIF schema

Nita Deshpande; Kenneth J. Addess; Wolfgang F. Bluhm; Jeffrey C. Merino-Ott; Wayne Townsend-Merino; Qing-qing Zhang; Charlie Knezevich; Lie-jun Xie; Li Chen; Zukang Feng; Rachel Kramer Green; Judith L. Flippen-Anderson; John D. Westbrook; Helen M. Berman; Philip E. Bourne

The Protein Data Bank (PDB) is the central worldwide repository for three-dimensional (3D) structure data of biological macromolecules. The Research Collaboratory for Structural Bioinformatics (RCSB) has completely redesigned its resource for the distribution and query of 3D structure data. The re-engineered site is currently in public beta test at http://pdbbeta.rcsb.org. The new site expands the functionality of the existing site by providing structure data in greater detail and uniformity, improved query and enhanced analysis tools. A new key feature is the integration and searchability of data from over 20 other sources covering genomic, proteomic and disease relationships. The current capabilities of the re-engineered site, which will become the RCSB production site at http://www.pdb.org in late 2005, are described.


Nucleic Acids Research | 2015

The RCSB Protein Data Bank: views of structural biology for basic and applied research and education.

Peter W. Rose; Andreas Prlić; Chunxiao Bi; Wolfgang F. Bluhm; Cole Christie; Shuchismita Dutta; Rachel Kramer Green; David S. Goodsell; John D. Westbrook; Jesse Woo; Jasmine Young; Christine Zardecki; Helen M. Berman; Philip E. Bourne; Stephen K. Burley

The RCSB Protein Data Bank (RCSB PDB, http://www.rcsb.org) provides access to 3D structures of biological macromolecules and is one of the leading resources in biology and biomedicine worldwide. Our efforts over the past 2 years focused on enabling a deeper understanding of structural biology and providing new structural views of biology that support both basic and applied research and education. Herein, we describe recently introduced data annotations including integration with external biological resources, such as gene and drug databases, new visualization tools and improved support for the mobile web. We also describe access to data files, web services and open access software components to enable software developers to more effectively mine the PDB archive and related annotations. Our efforts are aimed at expanding the role of 3D structure in understanding biology and medicine.


Nucleic Acids Research | 2002

The Protein Data Bank: unifying the archive

John D. Westbrook; Zukang Feng; Shri Jain; Talapady N. Bhat; Narmada Thanki; Veerasamy Ravichandran; Gary L. Gilliland; Wolfgang F. Bluhm; Helge Weissig; Douglas S. Greer; Philip E. Bourne; Helen M. Berman

The Protein Data Bank (PDB; http://www.pdb.org/) is the single worldwide archive of structural data of biological macromolecules. This paper describes the progress that has been made in validating all data in the PDB archive and in releasing a uniform archive for the community. We have now produced a collection of mmCIF data files for the PDB archive (ftp://beta.rcsb.org/pub/pdb/uniformity/data/mmCIF/). A utility application that converts the mmCIF data files to the PDB format (called CIFTr) has also been released to provide support for existing software.


Bioinformatics | 2010

Pre-calculated protein structure alignments at the RCSB PDB website

Andreas Prlić; Spencer E Bliven; Peter W. Rose; Wolfgang F. Bluhm; Chris Bizon; Adam Godzik; Philip E. Bourne

Summary: With the continuous growth of the RCSB Protein Data Bank (PDB), providing an up-to-date systematic structure comparison of all protein structures poses an ever growing challenge. Here, we present a comparison tool for calculating both 1D protein sequence and 3D protein structure alignments. This tool supports various applications at the RCSB PDB website. First, a structure alignment web service calculates pairwise alignments. Second, a stand-alone application runs alignments locally and visualizes the results. Third, pre-calculated 3D structure comparisons for the whole PDB are provided and updated on a weekly basis. These three applications allow users to discover novel relationships between proteins available either at the RCSB PDB or provided by the user. Availability and Implementation: A web user interface is available at http://www.rcsb.org/pdb/workbench/workbench.do. The source code is available under the LGPL license from http://www.biojava.org. A source bundle, prepared for local execution, is available from http://source.rcsb.org Contact: [email protected]; [email protected]


Nucleic Acids Research | 2007

Remediation of the protein data bank archive

Kim Henrick; Zukang Feng; Wolfgang F. Bluhm; Dimitris Dimitropoulos; Jurgen F. Doreleijers; Shuchismita Dutta; Judith L. Flippen-Anderson; John Ionides; Chisa Kamada; Eugene Krissinel; Catherine L. Lawson; John L. Markley; Haruki Nakamura; Richard Newman; Yukiko Shimizu; Jawahar Swaminathan; Sameer Velankar; Jeramia Ory; Eldon L. Ulrich; Wim F. Vranken; John D. Westbrook; Reiko Yamashita; Huanwang Yang; Jasmine Young; Muhammed Yousufuddin; Helen M. Berman

The Worldwide Protein Data Bank (wwPDB; wwpdb.org) is the international collaboration that manages the deposition, processing and distribution of the PDB archive. The online PDB archive at ftp://ftp.wwpdb.org is the repository for the coordinates and related information for more than 47 000 structures, including proteins, nucleic acids and large macromolecular complexes that have been determined using X-ray crystallography, NMR and electron microscopy techniques. The members of the wwPDB–RCSB PDB (USA), MSD-EBI (Europe), PDBj (Japan) and BMRB (USA)–have remediated this archive to address inconsistencies that have been introduced over the years. The scope and methods used in this project are presented.


Nucleic Acids Research | 2004

The distribution and query systems of the RCSB Protein Data Bank

Philip E. Bourne; Kenneth J. Addess; Wolfgang F. Bluhm; Li Chen; Nita Deshpande; Zukang Feng; Ward Fleri; Rachel Kramer Green; Jeffrey C. Merino-Ott; Wayne Townsend-Merino; Helge Weissig; John D. Westbrook; Helen M. Berman

The Protein Data Bank (PDB; http://www.pdb.org) is the primary source of information on the 3D structure of biological macromolecules. The PDBs mandate is to disseminate this information in the most usable form and as widely as possible. The current query and distribution system is described and an alpha version of the future re-engineered system introduced.

Collaboration


Dive into the Wolfgang F. Bluhm's collaboration.

Top Co-Authors

Avatar

Philip E. Bourne

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andreas Prlić

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter W. Rose

University of California

View shared research outputs
Top Co-Authors

Avatar

Chunxiao Bi

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge