Wolfgang Friesl-Hanl
Austrian Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Wolfgang Friesl-Hanl.
International Journal of Phytoremediation | 2015
Petra Kidd; Michel Mench; Vanessa Álvarez-López; Valérie Bert; Ioannis Dimitriou; Wolfgang Friesl-Hanl; Rolf Herzig; Jolien Janssen; Aliaksandr Kolbas; Ingo Müller; Silke Neu; Giancarlo Renella; Ann Ruttens; Jaco Vangronsveld; Markus Puschenreiter
The last few decades have seen the rise of Gentle soil Remediation Options (GRO), which notably include in situ contaminant stabilization (“inactivation”) and plant-based (generally termed “phytoremediation”) options. For trace element (TE)-contaminated sites, GRO aim to either decrease their labile pool and/or total content in the soil, thereby reducing related pollutant linkages. Much research has been dedicated to the screening and selection of TE-tolerant plant species and genotypes for application in GRO. However, the number of field trials demonstrating successful GRO remains well below the number of studies carried out at a greenhouse level. The move from greenhouse to field conditions requires incorporating agronomical knowledge into the remediation process and the ecological restoration of ecosystem services. This review summarizes agronomic practices against their demonstrated or potential positive effect on GRO performance, including plant selection, soil management practices, crop rotation, short rotation coppice, intercropping/row cropping, planting methods and plant densities, harvest and fertilization management, pest and weed control and irrigation management. Potentially negative effects of GRO, e.g., the introduction of potentially invasive species, are also discussed. Lessons learnt from long-term European field case sites are given for aiding the choice of appropriate management practices and plant species.
Journal of Environmental Management | 2016
Sarah Jones; R. Paul Bardos; Petra Kidd; Michel Mench; Frans de Leij; Tony Hutchings; Andrew B. Cundy; Christopher Joyce; Gerhard Soja; Wolfgang Friesl-Hanl; Rolf Herzig; Pierre Menger
Contamination of soil with trace elements, such as Cu, is an important risk management issue. A pot experiment was conducted to determine the effects of three biochars and compost on plant growth and the immobilisation of Cu in a contaminated soil from a site formerly used for wood preservation. To assess Cu mobility, amended soils were analysed using leaching tests pre- and post-incubation, and post-growth. Amended and unamended soils were planted with sunflower, and the resulting plant material was assessed for yield and Cu concentration. All amendments significantly reduced leachable Cu compared to the unamended soil, however, the greatest reductions in leachable Cu were associated with the higher biochar application rate. The greatest improvements in plant yields were obtained with the higher application rate of biochar in combination with compost. The results suggest joint biochar and compost amendment reduces Cu mobility and can support biomass production on Cu-contaminated soils.
Science of The Total Environment | 2014
Jurate Kumpiene; Valérie Bert; Ioannis Dimitriou; Jan Eriksson; Wolfgang Friesl-Hanl; Rafal Galazka; Rolf Herzig; Jolien Janssen; Petra Kidd; Michel Mench; Ingo Müller; Silke Neu; Nadège Oustriere; Markus Puschenreiter; Giancarlo Renella; Pierre-Hervé Roumier; Grzegorz Siebielec; Jaco Vangronsveld; Nicolas Manier
During the past decades a number of field trials with gentle remediation options (GRO) have been established on trace element (TE) contaminated sites throughout Europe. Each research group selects different methods to assess the remediation success making it difficult to compare efficacy between various sites and treatments. This study aimed at selecting a minimum risk assessment battery combining chemical and ecotoxicological assays for assessing and comparing the effectiveness of GRO implemented in seven European case studies. Two test batteries were pre-selected; a chemical one for quantifying TE exposure in untreated soils and GRO-managed soils and a biological one for characterizing soil functionality and ecotoxicity. Soil samples from field studies representing one of the main GROs (phytoextraction in Belgium, Sweden, Germany and Switzerland, aided phytoextraction in France, and aided phytostabilization or in situ stabilization/phytoexclusion in Poland, France and Austria) were collected and assessed using the selected test batteries. The best correlations were obtained between NH4NO3-extractable, followed by NaNO3-extractable TE and the ecotoxicological responses. Biometrical parameters and biomarkers of dwarf beans were the most responsive indicators for the soil treatments and changes in soil TE exposures. Plant growth was inhibited at the higher extractable TE concentrations, while plant stress enzyme activities increased with the higher TE extractability. Based on these results, a minimum risk assessment battery to compare/biomonitor the sites phytomanaged by GROs might consist of the NH4NO3 extraction and the bean Plantox test including the stress enzyme activities.
Journal of Hazardous Materials | 2017
Yumei Hua; Kate V. Heal; Wolfgang Friesl-Hanl
This review focuses on the applicability of red mud as an amendment for metal/metalloid-contaminated soil. The varying properties of red muds from different sources are presented as they influence the potentially toxic element (PTE) concentration in amended soil. Experiments conducted worldwide from the laboratory to the field scale are screened and the influencing parameters and processes in soils are highlighted. Overall red mud amendment is likely to contribute to lowering the PTE availability in contaminated soil. This is attributed to the high pH, Fe and Al oxide/oxyhydroxide content of red mud, especially hematite, boehmite, gibbsite and cancrinite phases involved in immobilising metals/metalloids. In most cases red mud amendment resulted in a lowering of metal concentrations in plants. Bacterial activity was intensified in red mud-amended contaminated soil, suggesting the toxicity from PTEs was reduced by red mud, as well as indirect effects due to changes in soil properties. Besides positive effects of red mud amendment, negative effects may also appear (e.g. increased mobility of As, Cu) which require site-specific risk assessments. Red mud remediation of metal/metalloid contaminated sites has the potential benefit of reducing red mud storage and associated problems.
Science of The Total Environment | 2017
Celestino Quintela-Sabarís; Lilian Marchand; Petra Kidd; Wolfgang Friesl-Hanl; Markus Puschenreiter; Jurate Kumpiene; Ingo Müller; Silke Neu; Jolien Janssen; Jaco Vangronsveld; Ioannis Dimitriou; Grzegorz Siebielec; Rafał Gałązka; Valérie Bert; Rolf Herzig; Andrew B. Cundy; Nadège Oustriere; Aliaksandr Kolbas; William Galland; Michel Mench
Gentle remediation options (GRO), i.e. in situ stabilisation, (aided) phytoextraction and (aided) phytostabilisation, were implemented at ten European sites contaminated with trace elements (TE) from various anthropogenic sources: mining, atmospheric fallout, landfill leachates, wood preservatives, dredged-sediments, and dumped wastes. To assess the performance of the GRO options, topsoil was collected from each field trial, potted, and cultivated with lettuce (Lactuca sativa L.) for 48days. Shoot dry weight (DW) yield, photosynthesis efficiency and major element and TE concentrations in the soil pore water and lettuce shoots were measured. GRO implementation had a limited effect on TE concentrations in the soil pore water, although use of multivariate Co-inertia Analysis revealed a clear amelioration effect in phytomanaged soils. Phytomanagement increased shoot DW yield at all industrial and mine sites, whereas in agricultural soils improvements were produced in one out of five sites. Photosynthesis efficiency was less sensitive than changes in shoot biomass and did not discriminate changes in soil conditions. Based on lettuce shoot DW yield, compost amendment followed by phytoextraction yielded better results than phytostabilisation; moreover shoot ionome data proved that, depending on initial soil conditions, recurrent compost application may be required to maintain crop production with common shoot nutrient concentrations.
Nova Biotechnologica et Chimica | 2014
Vladimír Frišták; Wolfgang Friesl-Hanl; Martin Pipíška; Barbora Richveisová Micháleková; Gerhard Soja
Abstract This paper evaluates the effect of simulated conditions of artificial aging on sorption capacity of two types of biochar. These were produced by slow pyrolysis from different feedstock - beech wood chips (BC A) and garden green waste residues (BC B). Cadmium served as a model for potentially toxic metals. Twenty freeze-thaw cycles were used to simulate physical aging. The determination of biochar physicochemical properties showed main changes in CEC and SA values of aged sorbents. The maximum sorption capacities of aged BC A sorbent were higher by about 26 % and aged BC B sorbent by about 20% compared to Qmax of non-aged biochar. Qmax of aged BC B peaked at 9.4 mg g-1 whereas BC A sorbed significantly less Cd. FT-IR analyses confirmed the changes in structural composition and content of functional groups on biochar surfaces. The artificial physical aging model was assessed as an efficient tool for investigation of natural weathering conditions.
Science of The Total Environment | 2018
Anna Wawra; Wolfgang Friesl-Hanl; Markus Puschenreiter; Gerhard Soja; Thomas G. Reichenauer; Caroline Roithner; Andrea Watzinger
In soil, mixed contamination with potentially toxic trace elements and polycyclic aromatic hydrocarbons (PAHs) may persist for a long time due to strong adsorption to the soil matrix and to its toxicity to microorganism. We conducted an incubation batch experiment to test the effect of soil amendments (biochar, gravel sludge, iron oxides) on the immobilisation of trace elements. To monitor microbial degradation, a 13C-PHE (phenanthrene) label was introduced to soil for 13C-PLFA (phospholipid fatty acid) analysis. Soil amendments increased soil pH, reduced mobility of NH4NO3-extractable trace elements Cd and Zn, and increased mobile Cu. A small consortium of PHE degraders was identified mainly in the microbial groups of gram-negative bacteria and actinomycetes. The degradation process of PHE peaked 9days after incubation start. PAH concentrations remained constant in the soil within the 30-day incubation, except for the easily available 13C-PHE in the amended treatment. In order to test the effect of plants and soil amendments under more realistic conditions, we also conducted an outdoor pot experiment with black locust (Robinia pseudoacacia Nyirsegi). Furthermore, soil amendments increased the mobility of soil Cu and As and decreased the mobility of Cd, Pb and Sb. The uptake of trace elements to leaves was low. Σ 16 U.S. EPA PAHs were significantly reduced only in the combined treatment of black locust and soil amendments after 12months of plant growth. Soil amendment-assisted phytoremediation showed a high efficiency in PAH dissipation and may be a useful remediation technique for mixed contaminated soils.
Environmental Science and Pollution Research | 2018
Jasmin Karer; Franz Zehetner; Gerald Dunst; Jakob Fessl; Mario Wagner; Markus Puschenreiter; Māra Stapkēviča; Wolfgang Friesl-Hanl; Gerhard Soja
Besides carbon sequestration and improvement of soil properties, biochar (BC) has increasingly been studied as an amendment to immobilise heavy metals in contaminated soils. In a 2-year experiment, we analysed the effects of poplar BC (P-BC, mixed with compost) and gravel sludge with siderite-bearing material (GSFe) on a Cd-, Pb- and Zn-contaminated soil and on metal concentration in Miscanthus × giganteus shoots under greenhouse and field conditions. In the greenhouse, 1% (m/m) P-BC addition reduced NH4NO3-extractable Cd, Pb and Zn concentrations by 75, 86 and 92%, respectively, at the end of the study. In the leachates, P-BC (1%) could significantly reduce Cd and Zn in both years. In the field, P-BC (3%) induced a reduction of extractable Cd by 87% whereas a combination of P-BC + GSFe reduced Pb by 82% and Zn by 98% in the first year and by 83 and 96% in the second year. In contrast, the metal immobilisation in the soil was hardly reflected in the shoots of Miscanthus × giganteus which generally showed metal concentrations close to control. While Cd was not influenced in both years, Pb and Zn were slightly reduced. Our study confirmed that Miscanthus is an efficient metal excluder, corroborating its suitability for the production of renewable biomass on metal-contaminated soils.
Journal of Environmental Management | 2013
Andrew B. Cundy; Richard Bardos; Andrew Church; Markus Puschenreiter; Wolfgang Friesl-Hanl; Ingo Müller; Silke Neu; Michel Mench; Nele Witters; Jaco Vangronsveld
Environmental Geochemistry and Health | 2009
Wolfgang Friesl-Hanl; K. Platzer; Othmar Horak; Martin H. Gerzabek