Wolfgang Hengstenberg
Ruhr University Bochum
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Wolfgang Hengstenberg.
Critical Reviews in Microbiology | 1988
Jonathan Reizer; Milton H. Saier; Josef Deutscher; F C Grenier; John Thompson; Wolfgang Hengstenberg; Steven S. Dills
This review consists of three major sections. The first and largest section reviews the protein constituents and known properties of the phosphotransferase systems present in well-studied Gram-positive bacteria. These bacteria include species of the following genera: (1) Staphylococcus, (2) Streptococcus, (3) Bacillus, (4) Lactobacillus, (5) Clostridium, (6) Arthrobacter, and (7) Brochothrix. The properties of the different systems are compared. The second major section deals with the regulation of carbohydrate uptake. There are four parts: (1) inhibition by intracellular sugar phosphates in Staphylococcus aureus, (2) PTS-mediated regulation of glycerol uptake in Bacillus subtilis, (3) competition for phospho-HPr in Streptococcus mutans, and (4) the possible involvement of protein kinases in the regulation of sugar uptake via the phosphotransferase system. The third section deals with the phenomenon of inducer expulsion. The first part is concerned with the physiological characterization of the phenomenon; then the consequences of unregulated uptake and expulsion, a futile cycle of energy expenditure, are considered. Finally, the biochemistry of the protein kinase and the protein phosphate phosphatase system, which appears to regulate sugar transport via the phosphotransferase system, is defined. The review, therefore, concentrates on the phosphotransferase system, its functions in carbohydrate transport and phosphorylation, the mechanisms of its regulation, and the mechanism by which it participates in the regulation of other physiological processes in the bacterial cell.
Molecular Microbiology | 1999
Melanie Kravanja; Roswitha Engelmann; Valérie Dossonnet; Martin Blüggel; Helmut E. Meyer; Rainer Frank; Anne Galinier; Josef Deutscher; Norbert Schnell; Wolfgang Hengstenberg
The HPr kinase of Gram‐positive bacteria is an ATP‐dependent serine protein kinase, which phosphorylates the HPr protein of the bacterial phosphotransferase system (PTS) and is involved in the regulation of carbohydrate metabolism. The hprK gene from Enterococcus faecalis was cloned via polymerase chain reaction (PCR) and sequenced. The deduced amino acid sequence was confirmed by microscale Edman degradation and mass spectrometry combined with collision‐induced dissociation of tryptic peptides derived from the HPr kinase of E. faecalis. The gene was overexpressed in Escherichia coli, which does not contain any ATP‐dependent HPr kinase or phosphatase activity. The homogeneous recombinant protein exhibits the expected HPr kinase activity as well as a P‐Ser‐HPr phosphatase activity, which was assumed to be a separate enzyme activity. The bifunctional HPr kinase/phosphatase acts preferentially as a kinase at high ATP levels of 2 mM occurring in glucose‐metabolizing Streptococci. At low ATP levels, the enzyme hydrolyses P‐Ser‐HPr. In addition, high concentrations of phosphate present under starvation conditions inhibit the HPr kinase activity. Thus, a putative function of the enzyme may be to adjust the ratio of HPr and P‐Ser‐HPr according to the metabolic state of the cell; P‐Ser‐HPr is involved in carbon catabolite repression and regulates sugar uptake via the phosphotransferase system (PTS). Reinvestigation of the previously described Bacillus subtilis HPr kinase revealed that it also possesses P‐Ser‐HPr phosphatase activity. However, contrary to the E. faecalis enzyme, ATP alone was not sufficient to switch the phosphatase activity of the B. subtilis enzyme to the kinase activity. A change in activity of the B. subtilis HPr kinase was only observed when fructose‐1,6‐bisphosphate was also present.
Proceedings of the National Academy of Sciences of the United States of America | 2002
Ivan Mijakovic; Sandrine Poncet; Anne Galinier; Vicente Monedero; Sonia Fieulaine; Joël Janin; Sylvie Nessler; José Antonio Marquez; Klaus Scheffzek; Sonja Hasenbein; Wolfgang Hengstenberg; Josef Deutscher
In most Gram-positive bacteria, serine-46-phosphorylated HPr (P-Ser-HPr) controls the expression of numerous catabolic genes (≈10% of their genome) by acting as catabolite corepressor. HPr kinase/phosphorylase (HprK/P), the bifunctional sensor enzyme for catabolite repression, phosphorylates HPr, a phosphocarrier protein of the sugar-transporting phosphoenolpyruvate/glycose phosphotransferase system, in the presence of ATP and fructose-1,6-bisphosphate but dephosphorylates P-Ser-HPr when phosphate prevails over ATP and fructose-1,6-bisphosphate. We demonstrate here that P-Ser-HPr dephosphorylation leads to the formation of HPr and pyrophosphate. HprK/P, which binds phosphate at the same site as the β phosphate of ATP, probably uses the inorganic phosphate to carry out a nucleophilic attack on the phosphoryl bond in P-Ser-HPr. HprK/P is the first enzyme known to catalyze P-protein dephosphorylation via this phospho–phosphorolysis mechanism. This reaction is reversible, and at elevated pyrophosphate concentrations, HprK/P can use pyrophosphate to phosphorylate HPr. Growth of Bacillus subtilis on glucose increased intracellular pyrophosphate to concentrations (≈6 mM), which in in vitro tests allowed efficient pyrophosphate-dependent HPr phosphorylation. To effectively dephosphorylate P-Ser-HPr when glucose is exhausted, the pyrophosphate concentration in the cells is lowered to 1 mM. In B. subtilis, this might be achieved by YvoE. This protein exhibits pyrophosphatase activity, and its gene is organized in an operon with hprK.
Structure | 1995
Christian Wiesmann; Gerald Beste; Wolfgang Hengstenberg; Georg E. Schulz
BACKGROUND The enzyme 6-phospho-beta-galactosidase hydrolyzes phospholactose, the product of a phosphor-enolpyruvate-dependent phosphotransferase system. It belongs to glycosidase family 1 and no structure has yet been published for a member of this family. RESULTS The crystal structure of 6-phospho-beta-galactosidase was determined at 2.3 A resolution by multiple isomorphous replacement, using the wild-type enzyme and a designed cysteine mutant. A second crystal form, found with the mutant enzyme, was solved by molecular replacement, yielding the conformation of two chain loops that are invisible in the first crystal form. The active center, located through catalytic residues identified in previous studies, cannot be accessed by the substrate if the two loops are in their defined conformation. The enzyme contains a (beta alpha)8 barrel and the relationship of its chain fold to that of other glycosidases has been quantified. As a side issue, we observed that a cysteine point mutant designed for X-ray analysis crystallized mainly as a symmetric dimer around an intermolecular disulfide bridge formed by the newly introduced cysteine. CONCLUSIONS The presented analysis provides a basis on which to model all other family 1 members and thereby will help in elucidating the catalytic mechanisms of these sequence-related enzymes. Moreover, this enzyme belongs to a superfamily of glycosidases sharing a (beta alpha)8 barrel with catalytic glutamates/aspartates at the ends of the fourth and the seventh strands of the beta barrel.
FEBS Journal | 1977
Konrad Beyreuther; Hildegard Raufuss; Otto Schrecker; Wolfgang Hengstenberg
The primary structure of the histidine-containing phosphocarrier protein HPr of the phosphoenolpyruvate-dependent phosphotransferase system from Staphylococcus aureus was determined by automated Edman degradation. The complete sequence was deduced from the direct analysis of the protein by automated Edman degradation in a liquid-phase sequencer of Edman and from the sequence of tryptic, thermolytic and cyanogen bromide peptides as obtained by automated Edman degradation in a solid-phase sequencer of Laursen. The amino-acid sequence was found to be Met-Glu-Gln-Asn-Ser-Tyr-Val-Ile-Ile-Asp-Glu-Thr-Gly-Ile-His-Ala-Arg-Pro-Ala-Thr-Met-Leu-Val-Gln-Thr-Ala-Ser-Lys-Phe-Asp-Ser-Ile-Asp-Gln-Gly-Gly-Tyr-Asp-Ser-Met-Gln-Leu-Lys-Ser-Leu-Gly-Val-Gly-Lys-Asp-Glu-Glu-Ile-Thr-Ile-Tm-Ser-Ala-Asp-Lys-Lys-Glu-Gly-Leu-Thr-Lys-Met-Ser-Ile-Val. The 70 residues correspond to a molecular weight of 7685. The one histidine involved in the phosphotransfer reaction of this protein was found at position 15 as part of a region of the sequence which has no predictable secondary structure. It is suggested that this protein belongs to the group of male proteins with the active center located on a protrusion rather than a cleft.
Applied and Environmental Microbiology | 2002
Clara C. Posthuma; Rechien Bader; Roswitha Engelmann; Pieter W. Postma; Wolfgang Hengstenberg; Peter H. Pouwels
ABSTRACT Purification of xylulose 5-phosphate phosphoketolase (XpkA), the central enzyme of the phosphoketolase pathway (PKP) in lactic acid bacteria, and cloning and sequence analysis of the encoding gene, xpkA, from Lactobacillus pentosus MD363 are described. xpkA encodes a 788-amino-acid protein with a calculated mass of 88,705 Da. Expression of xpkA in Escherichia coli led to an increase in XpkA activity, while an xpkA knockout mutant of L. pentosus lost XpkA activity and was not able to grow on energy sources that are fermented via the PKP, indicating that xpkA encodes an enzyme with phosphoketolase activity. A database search revealed that there are high levels of similarity between XpkA and a phosphoketolase from Bifidobacterium lactis and between XpkA and a (putative) protein present in a number of evolutionarily distantly related organisms (up to 54% identical residues). Expression of xpkA in L. pentosus was induced by sugars that are fermented via the PKP and was repressed by glucose mediated by carbon catabolite protein A (CcpA) and by the mannose phosphoenolpyruvate phosphotransferase system. Most of the residues involved in correct binding of the cofactor thiamine pyrophosphate (TPP) that are conserved in transketolase, pyruvate decarboxylase, and pyruvate oxidase were also conserved at a similar position in XpkA, implying that there is a similar TPP-binding fold in XpkA.
Proceedings of the National Academy of Sciences of the United States of America | 2002
José Antonio Márquez; Sonja Hasenbein; Brigitte Koch; Sonia Fieulaine; Sylvie Nessler; Robert B. Russell; Wolfgang Hengstenberg; Klaus Scheffzek
The histidine containing phospho carrier protein (HPr) kinase/phosphatase is involved in carbon catabolite repression, mainly in Gram-positive bacteria. It is a bifunctional enzyme that phosphorylates Ser-46-HPr in an ATP-dependent reaction and dephosphorylates P-Ser-46-HPr. X-ray analysis of the full-length crystalline enzyme from Staphylococcus xylosus at a resolution of 1.95 Å shows the enzyme to consist of two clearly separated domains that are assembled in a hexameric structure resembling a three-bladed propeller. The N-terminal domain has a βαβ fold similar to a segment from enzyme I of the sugar phosphotransferase system and to the uridyl-binding portion of MurF; it is structurally organized in three dimeric modules exposed to form the propeller blades. Two unexpected phosphate ions associated with highly conserved residues were found in the N-terminal dimeric interface. The C-terminal kinase domain is similar to that of the Lactobacillus casei enzyme and is assembled in six copies to form the compact central hub of the propeller. Beyond previously reported similarity with adenylate kinase, we suggest evolutionary relationship with phosphoenolpyruvate carboxykinase. In addition to a phosphate ion in the phosphate-binding loop of the kinase domain, we have identified a second phosphate-binding site that, by comparison with adenylate kinases, we believe accommodates a product/substrate phosphate, normally covalently linked to Ser-46 of HPr. Thus, we propose that our structure represents a product/substrate mimic of the kinase/phosphatase reaction.
Structure | 1997
Piotr Sliz; Roswitha Engelmann; Wolfgang Hengstenberg; Emil F. Pai
BACKGROUND The bacterial phosphoenolpyruvate: sugar phosphotransferase system (PTS) is responsible for the binding, transmembrane transport and phosphorylation of numerous sugar substrates. The system is also involved in the regulation of a variety of metabolic and transcriptional processes. The PTS consists of two non-specific energy coupling components, enzyme I and a heat stable phosphocarrier protein (HPr), as well as several sugar-specific multiprotein permeases known as enzymes II. In most cases, enzymes IIA and IIB are located in the cytoplasm, while enzyme IIC acts as a membrane channel. Enzyme IIAlactose belongs to the lactose/cellobiose-specific family of enzymes II, one of four functionally and structurally distinct groups. The protein, which normally functions as a trimer, is believed to separate into its subunits after phosphorylation. RESULTS The crystal structure of the trimeric enzyme IIAlactose from Lactococcus lactis has been determined at 2.3 A resolution. The subunits of the enzyme, related to each other by the inherent threefold rotational symmetry, possess interesting structural features such as coiled-coil-like packing and a methionine cluster. The subunits each comprise three helices (I, II and III) and pack against each other forming a nine-helix bundle. This helical bundle is stabilized by a centrally located metal ion and also encloses a hydrophobic cavity. The three phosphorylation sites (His78 on each monomer) are located in helices III and their sidechains protrude into a large groove between helices I and II of the neighbouring subunits. A model of the complex between phosphorylated HPr and enzyme IIAlactose has been constructed. CONCLUSIONS Enzyme IIAlactose is the first representative of the family of lactose/cellobiose-specific enzymes IIA for which a three-dimensional structure has been determined. Some of its structural features, like the presence of two histidine residues at the active site, seem to be common to all enzymes no overall structural homology is observed to any PTS proteins or to any other proteins in the Protein Data Bank. Enzyme IIAlactose shows surface complementarity to the phosphorylated form of HPr and several energetically favourable interactions between the two molecules can be predicted.
Journal of Molecular Biology | 1994
Zongchao Jia; Margaret Vandonselaar; Wolfgang Hengstenberg; J. Wilson Quail; Louis T. J. Delbaere
The histidine-containing phosphocarrier protein (HPr) is a central component of the phosphoenolpyruvate: sugar phosphotransferase system (PTS) that transports carbohydrates across the cell membrane of bacteria. The three-dimensional structure of Gram-positive Streptococcus faecalis HPr has been determined using the method of multiple isomorphous replacement. The R factor for all data is 0.156 for S. faecalis HPr at 1.6 A resolution with very good geometry. The overall folding topology of HPr is a classical open-faced beta-sandwich, consisting of four antiparallel beta-strands and three alpha-helices. Remarkable disallowed Ramachandran torsion angles of Ala16 at the active center, revealed by the X-ray structure of S. faecalis HPr, demonstrate a unique example of torsion-angle strain that is likely involved directly in protein function. A brief report concerning the torsion-angle strain has been presented recently. A newly-determined pH 7.0 structure is shown to have the same open conformation of the active center and the same torsion-angle strain at Ala16, suggesting that pH is not responsible for the structural observations. The current structure suggests a role for residues 12 and 51 in HPrs function, since they are involved in the active center through direct and indirect hydrogen-bonding interactions with the imidazole ring of His15. It is found that Ser46, the regulatory site in HPr from Gram-positive bacteria, N-caps the minor alpha-B helix and is also involved in the Asn43-Ser46 beta-turn. This finding, in conjunction with the proposed routes of communication between the regulatory site Ser46 and the active center in S. faecalis HPr, provides new insight into the understanding of how Ser46 might function. The putative involvement of the C-terminal alpha-carboxyl group and the related Gly67-Glu70 reverse beta-turn with respect to the function of HPr are described.
Protein Science | 2009
Mineyuki Hattori; Hua Li; Hiroaki Yamada; Kazuyuki Akasaka; Wolfgang Hengstenberg; Wolfram Gronwald; Hans Robert Kalbitzer
Infrequent structural fluctuations of a globular protein is seldom detected and studied in detail. One tyrosine ring of HPr from Staphylococcus carnosus, an 88‐residue phosphocarrier protein with no disulfide bonds, undergoes a very slow ring flip, the pressure and temperature dependence of which is studied in detail using the on‐line cell high‐pressure nuclear magnetic resonance technique in the pressure range from 3 MPa to 200 MPa and in the temperature range from 257 K to 313 K. The ring of Tyr6 is buried sandwiched between a β‐sheet and α‐helices (the water‐accessible area is less than 0.26 nm2), its hydroxyl proton being involved in an internal hydrogen bond. The ring flip rates101∼105 s−1 were determined from the line shape analysis of Hδ1, δ2 and Hε1,ε2 of Tyr6, giving an activation volume ΔV‡ of 0.044 ± 0.008 nm3 (27 mL mol−1), an activation enthalpy ΔH‡ of 89 ± 10 kJ mol−1, and an activation entropy ΔS‡ of 16 ± 2 JK−1 mol−1. The ΔV‡ and ΔH‡ values for HPr found previously for Tyr and Phe ring flips of BPTI and cytochrome c fall within the range of ΔV‡ of 28 to 51 mL mol−1 and ΔH‡ of 71 to 155 kJ mol−1. The fairly common ΔV‡ and ΔH‡ values are considered to represent the extra space or cavity required for the ring flip and the extra energy required to create a cavity, respectively, in the core part of a globular protein. Nearly complete cold denaturation was found to take place at 200 MPa and 257 K independently from the ring reorientation process.