Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wolfgang R. Streit is active.

Publication


Featured researches published by Wolfgang R. Streit.


Trends in Microbiology | 2010

Distinct gene set in two different lineages of ammonia-oxidizing archaea supports the phylum Thaumarchaeota

Anja Spang; Roland Hatzenpichler; Céline Brochier-Armanet; Thomas Rattei; Patrick Tischler; Eva Spieck; Wolfgang R. Streit; David A. Stahl; Michael Wagner; Christa Schleper

Globally distributed archaea comprising ammonia oxidizers of moderate terrestrial and marine environments are considered the most abundant archaeal organisms on Earth. Based on 16S rRNA phylogeny, initial assignment of these archaea was to the Crenarchaeota. By contrast, features of the first genome sequence from a member of this group suggested that they belong to a novel phylum, the Thaumarchaeota. Here, we re-investigate the Thaumarchaeota hypothesis by including two newly available genomes, that of the marine ammonia oxidizer Nitrosopumilus maritimus and that of Nitrososphaera gargensis, a representative of another evolutionary lineage within this group predominantly detected in terrestrial environments. Phylogenetic studies based on r-proteins and other core genes, as well as comparative genomics, confirm the assignment of these organisms to a separate phylum and reveal a Thaumarchaeota-specific set of core informational processing genes, as well as potentially ancestral features of the archaea.


Applied and Environmental Microbiology | 2003

Prospecting for Novel Biocatalysts in a Soil Metagenome

Sonja Voget; Christian Leggewie; A. Uesbeck; C. Raasch; Karl-Erich Jaeger; Wolfgang R. Streit

ABSTRACT The metagenomes of complex microbial communities are rich sources of novel biocatalysts. We exploited the metagenome of a mixed microbial population for isolation of more than 15 different genes encoding novel biocatalysts by using a combined cultivation and direct cloning strategy. A 16S rRNA sequence analysis revealed the presence of hitherto uncultured microbes closely related to the genera Pseudomonas, Agrobacterium, Xanthomonas, Microbulbifer, and Janthinobacterium. Total genomic DNA from this bacterial community was used to construct cosmid DNA libraries, which were functionally searched for novel enzymes of biotechnological value. Our searches in combination with cosmid sequencing resulted in identification of four clones encoding 12 putative agarase genes, most of which were organized in clusters consisting of two or three genes. Interestingly, nine of these agarase genes probably originated from gene duplications. Furthermore, we identified by DNA sequencing several other biocatalyst-encoding genes, including genes encoding a putative stereoselective amidase (amiA), two cellulases (gnuB and uvs080), an α-amylase (amyA), a 1,4-α-glucan branching enzyme (amyB), and two pectate lyases (pelA and uvs119). Also, a conserved cluster of two lipase genes was identified, which was linked to genes encoding a type I secretion system. The novel gene aguB was overexpressed in Escherichia coli, and the enzyme activities were determined. Finally, we describe more than 162 kb of DNA sequence that provides a strong platform for further characterization of this microbial consortium.


Applied Microbiology and Biotechnology | 2007

Metagenomics, biotechnology with non-culturable microbes

Christel Schmeisser; Helen L. Steele; Wolfgang R. Streit

Metagenomics as a new field of research has been developed over the past decade to elucidate the genomes of the non-cultured microbes with the goal to better understand global microbial ecology on the one side, and on the other side it has been driven by the increasing biotechnological demands for novel enzymes and biomolecules. Since it is well accepted that the majority of all microbes has not yet been cultured, the not-yet-cultivated microbes represent a shear unlimited and intriguing resource for the development of novel genes, enzymes and chemical compounds for use in biotechnology. However, with respect to biotechnology, metagenomics faces now two major challenges. Firstly, it has to identify truly novel biocatalysts to fulfil the needs of industrial processes and green chemistry. Secondly, the already available genes and enzymes need to be implemented in production processes to further prove the value of metagenome-derived sequences.


Applied and Environmental Microbiology | 2003

Metagenome survey of biofilms in drinking-water networks

Christel Schmeisser; C. Stöckigt; C. Raasch; Jost Wingender; K. N. Timmis; D. F. Wenderoth; Hans-Curt Flemming; Heiko Liesegang; Ruth A. Schmitz; Karl-Erich Jaeger; Wolfgang R. Streit

ABSTRACT Most naturally occurring biofilms contain a vast majority of microorganisms which have not yet been cultured, and therefore we have little information on the genetic information content of these communities. Therefore, we initiated work to characterize the complex metagenome of model drinking water biofilms grown on rubber-coated valves by employing three different strategies. First, a sequence analysis of 650 16S rRNA clones indicated a high diversity within the biofilm communities, with the majority of the microbes being closely related to the Proteobacteria. Only a small fraction of the 16S rRNA sequences were highly similar to rRNA sequences from Actinobacteria, low-G+C gram-positives and the Cytophaga-Flavobacterium-Bacteroides group. Our second strategy included a snapshot genome sequencing approach. Homology searches in public databases with 5,000 random sequence clones from a small insert library resulted in the identification of 2,200 putative protein-coding sequences, of which 1,026 could be classified into functional groups. Similarity analyses indicated that significant fractions of the genes and proteins identified were highly similar to known proteins observed in the genera Rhizobium, Pseudomonas, and Escherichia. Finally, we report 144 kb of DNA sequence information from four selected cosmid clones, of which two formed a 75-kb overlapping contig. The majority of the proteins identified by whole-cosmid sequencing probably originated from microbes closely related to the alpha-, beta-, and gamma-Proteobacteria. The sequence information was used to set up a database containing the phylogenetic and genomic information on this model microbial community. Concerning the potential health risk of the microbial community studied, no DNA or protein sequences directly linked to pathogenic traits were identified.


Applied and Environmental Microbiology | 2006

Isolation and biochemical characterization of two novel metagenome-derived esterases

Christian Elend; C Schmeisser; C Leggewie; Peter Babiak; José Daniel Carballeira; H Steele; Jean-Louis Reymond; Karl-Erich Jaeger; Wolfgang R. Streit

ABSTRACT The metagenomes of uncultured microbial communities are rich sources for novel biocatalysts. In this study, esterase EstA3 was derived from a drinking water metagenome, and esterase EstCE1 was derived from a soil metagenome. Both esterases are approximately 380 amino acids in size and show similarity to β-lactamases, indicating that they belong to family VIII of the lipases/esterases. EstA3 had a temperature optimum at 50°C and a pH optimum at pH 9.0. It was remarkably active and very stable in the presence of solvents and over a wide temperature and pH range. It is active in a multimeric form and displayed a high level of activity against a wide range of substrates including one secondary ester, 7-[3-octylcarboxy-(3-hydroxy-3-methyl-butyloxy)]-coumarin, which is normally unreactive. EstCE1 was active in the monomeric form and had a temperature optimum at 47°C and a pH optimum at pH 10. It exhibited the same level of stability as EstA3 over wide temperature and pH ranges and in the presence of dimethyl sulfoxide, isopropanol, and methanol. EstCE1 was highly enantioselective for (+)-menthylacetate. These enzymes display remarkable characteristics that cannot be related to the original environment from which they were derived. The high level of stability of these enzymes together with their unique substrate specificities make them highly useful for biotechnological applications.


Applied and Environmental Microbiology | 2001

Direct Cloning from Enrichment Cultures, a Reliable Strategy for Isolation of Complete Operons and Genes from Microbial Consortia

Plamena Entcheva; Wolfgang Liebl; Andre Johann; Thomas Hartsch; Wolfgang R. Streit

ABSTRACT Enrichment cultures of microbial consortia enable the diverse metabolic and catabolic activities of these populations to be studied on a molecular level and to be explored as potential sources for biotechnology processes. We have used a combined approach of enrichment culture and direct cloning to construct cosmid libraries with large (>30-kb) inserts from microbial consortia. Enrichment cultures were inoculated with samples from five environments, and high amounts of avidin were added to the cultures to favor growth of biotin-producing microbes. DNA was extracted from three of these enrichment cultures and used to construct cosmid libraries; each library consisted of between 6,000 and 35,000 clones, with an average insert size of 30 to 40 kb. The inserts contained a diverse population of genomic DNA fragments isolated from the consortia organisms. These three libraries were used to complement the Escherichia coli biotin auxotrophic strain ATCC 33767 Δ(bio-uvrB). Initial screens resulted in the isolation of seven different complementing cosmid clones, carrying biotin biosynthesis operons. Biotin biosynthesis capabilities and growth under defined conditions of four of these clones were studied. Biotin measured in the different culture supernatants ranged from 42 to 3,800 pg/ml/optical density unit. Sequencing the identified biotin synthesis genes revealed high similarities to biooperons from gram-negative bacteria. In addition, random sequencing identified other interesting open reading frames, as well as two operons, the histidine utilization operon (hut), and the cluster of genes involved in biosynthesis of molybdopterin cofactors in bacteria (moaABCDE).


Journal of Molecular Microbiology and Biotechnology | 2009

Advances in recovery of novel biocatalysts from metagenomes.

Helen L. Steele; Karl-Erich Jaeger; Rolf Daniel; Wolfgang R. Streit

Metagenomics has accelerated the process of discovery of novel biocatalysts by enabling scientists to tap directly into the entire diversity of enzymes held within natural microbial populations. Their characterization has revealed a great deal of valuable information about enzymatic activity in terms of factors which influence their stability and activity under a wide range of conditions. Many of the biocatalysts have particular properties making them suitable for biotechnological applications. A diverse array of strategies has been developed to optimize each step of the process of generating and screening metagenomic libraries for novel biocatalysts. This review covers the diversity of metagenome-derived enzymes characterized to date, and the strategies currently being developed to optimize discovery of novel metagenomic biocatalysts.


Environmental Microbiology | 2012

The genome of the ammonia-oxidizing Candidatus Nitrososphaera gargensis: insights into metabolic versatility and environmental adaptations.

Anja Spang; Anja Poehlein; Pierre Offre; Sabine Zumbrägel; Susanne Haider; Nicolas Rychlik; Boris Nowka; Christel Schmeisser; Elena V. Lebedeva; Thomas Rattei; Christoph Böhm; Markus Schmid; Alexander Galushko; Roland Hatzenpichler; Thomas Weinmaier; Rolf Daniel; Christa Schleper; Eva Spieck; Wolfgang R. Streit; Michael Wagner

The cohort of the ammonia-oxidizing archaea (AOA) of the phylum Thaumarchaeota is a diverse, widespread and functionally important group of microorganisms in many ecosystems. However, our understanding of their biology is still very rudimentary in part because all available genome sequences of this phylum are from members of the Nitrosopumilus cluster. Here we report on the complete genome sequence of Candidatus Nitrososphaera gargensis obtained from an enrichment culture, representing a different evolutionary lineage of AOA frequently found in high numbers in many terrestrial environments. With its 2.83 Mb the genome is much larger than that of other AOA. The presence of a high number of (active) IS elements/transposases, genomic islands, gene duplications and a complete CRISPR/Cas defence system testifies to its dynamic evolution consistent with low degree of synteny with other thaumarchaeal genomes. As expected, the repertoire of conserved enzymes proposed to be required for archaeal ammonia oxidation is encoded by N. gargensis, but it can also use urea and possibly cyanate as alternative ammonia sources. Furthermore, its carbon metabolism is more flexible at the central pyruvate switch point, encompasses the ability to take up small organic compounds and might even include an oxidative pentose phosphate pathway. Furthermore, we show that thaumarchaeota produce cofactor F420 as well as polyhydroxyalkanoates. Lateral gene transfer from bacteria and euryarchaeota has contributed to the metabolic versatility of N. gargensis. This organisms is well adapted to its niche in a heavy metal-containing thermal spring by encoding a multitude of heavy metal resistance genes, chaperones and mannosylglycerate as compatible solute and has the genetic ability to respond to environmental changes by signal transduction via a large number of two-component systems, by chemotaxis and flagella-mediated motility and possibly even by gas vacuole formation. These findings extend our understanding of thaumarchaeal evolution and physiology and offer many testable hypotheses for future experimental research on these nitrifiers.


Applied and Environmental Microbiology | 2009

Rhizobium sp. Strain NGR234 Possesses a Remarkable Number of Secretion Systems

Christel Schmeisser; Heiko Liesegang; Dagmar Krysciak; Nadia Bakkou; Antoine Le Quéré; Antje Wollherr; Isabelle Heinemeyer; Burkhard Morgenstern; Andreas Pommerening-Röser; Margarita Flores; Rafael Palacios; Sydney Brenner; Gerhard Gottschalk; Ruth A. Schmitz; William J. Broughton; Xavier Perret; Axel Strittmatter; Wolfgang R. Streit

ABSTRACT Rhizobium sp. strain NGR234 is a unique alphaproteobacterium (order Rhizobiales) that forms nitrogen-fixing nodules with more legumes than any other microsymbiont. We report here that the 3.93-Mbp chromosome (cNGR234) encodes most functions required for cellular growth. Few essential functions are encoded on the 2.43-Mbp megaplasmid (pNGR234b), and none are present on the second 0.54-Mbp symbiotic plasmid (pNGR234a). Among many striking features, the 6.9-Mbp genome encodes more different secretion systems than any other known rhizobia and probably most known bacteria. Altogether, 132 genes and proteins are linked to secretory processes. Secretion systems identified include general and export pathways, a twin arginine translocase secretion system, six type I transporter genes, one functional and one putative type III system, three type IV attachment systems, and two putative type IV conjugation pili. Type V and VI transporters were not identified, however. NGR234 also carries genes and regulatory networks linked to the metabolism of a wide range of aromatic and nonaromatic compounds. In this way, NGR234 can quickly adapt to changing environmental stimuli in soils, rhizospheres, and plants. Finally, NGR234 carries at least six loci linked to the quenching of quorum-sensing signals, as well as one gene (ngrI) that possibly encodes a novel type of autoinducer I molecule.


Molecular Plant-microbe Interactions | 1996

Biotin and other water-soluble vitamins are key growth factors for alfalfa root colonization by Rhizobium meliloti 1021.

Wolfgang R. Streit; Joseph Cm; Donald A. Phillips

Rhizosphere growth limitations imposed on Rhizobium meliloti by availability of biotin, thiamine, and riboflavin were overcome by adding nanomolar amounts of these vitamins. Studies done with R. meliloti 1021 showed that both synthesis and uptake of biotin promote colonization of alfalfa roots. Two lines of evidence indicated that plant-derived biotin normally promotes root colonization: (i) adding avidin significantly (P < or = 0.01) reduced rhizosphere growth of R meliloti 1021, and (ii) growth of Tn5-induced biotin auxotrophs still increased 10-fold in the rhizosphere. Synthesis, however, is the more important source of biotin for R. meliloti 1021 because in root colonization tests biotin auxotrophs competed very poorly with the parent strain. Mutations conferring biotin auxotrophy were closely linked on a single restriction fragment, and one was complemented with the Escherichia coli bio operon. Initial nucleotide sequencing and DNA-DNA hybridization tests showed the biotin synthesis genes in R. meliloti are quite different from those in E. coli.

Collaboration


Dive into the Wolfgang R. Streit's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rolf Daniel

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anja Poehlein

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge