Christel Schmeisser
University of Hamburg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christel Schmeisser.
Applied Microbiology and Biotechnology | 2007
Christel Schmeisser; Helen L. Steele; Wolfgang R. Streit
Metagenomics as a new field of research has been developed over the past decade to elucidate the genomes of the non-cultured microbes with the goal to better understand global microbial ecology on the one side, and on the other side it has been driven by the increasing biotechnological demands for novel enzymes and biomolecules. Since it is well accepted that the majority of all microbes has not yet been cultured, the not-yet-cultivated microbes represent a shear unlimited and intriguing resource for the development of novel genes, enzymes and chemical compounds for use in biotechnology. However, with respect to biotechnology, metagenomics faces now two major challenges. Firstly, it has to identify truly novel biocatalysts to fulfil the needs of industrial processes and green chemistry. Secondly, the already available genes and enzymes need to be implemented in production processes to further prove the value of metagenome-derived sequences.
Applied and Environmental Microbiology | 2003
Christel Schmeisser; C. Stöckigt; C. Raasch; Jost Wingender; K. N. Timmis; D. F. Wenderoth; Hans-Curt Flemming; Heiko Liesegang; Ruth A. Schmitz; Karl-Erich Jaeger; Wolfgang R. Streit
ABSTRACT Most naturally occurring biofilms contain a vast majority of microorganisms which have not yet been cultured, and therefore we have little information on the genetic information content of these communities. Therefore, we initiated work to characterize the complex metagenome of model drinking water biofilms grown on rubber-coated valves by employing three different strategies. First, a sequence analysis of 650 16S rRNA clones indicated a high diversity within the biofilm communities, with the majority of the microbes being closely related to the Proteobacteria. Only a small fraction of the 16S rRNA sequences were highly similar to rRNA sequences from Actinobacteria, low-G+C gram-positives and the Cytophaga-Flavobacterium-Bacteroides group. Our second strategy included a snapshot genome sequencing approach. Homology searches in public databases with 5,000 random sequence clones from a small insert library resulted in the identification of 2,200 putative protein-coding sequences, of which 1,026 could be classified into functional groups. Similarity analyses indicated that significant fractions of the genes and proteins identified were highly similar to known proteins observed in the genera Rhizobium, Pseudomonas, and Escherichia. Finally, we report 144 kb of DNA sequence information from four selected cosmid clones, of which two formed a 75-kb overlapping contig. The majority of the proteins identified by whole-cosmid sequencing probably originated from microbes closely related to the alpha-, beta-, and gamma-Proteobacteria. The sequence information was used to set up a database containing the phylogenetic and genomic information on this model microbial community. Concerning the potential health risk of the microbial community studied, no DNA or protein sequences directly linked to pathogenic traits were identified.
Environmental Microbiology | 2012
Anja Spang; Anja Poehlein; Pierre Offre; Sabine Zumbrägel; Susanne Haider; Nicolas Rychlik; Boris Nowka; Christel Schmeisser; Elena V. Lebedeva; Thomas Rattei; Christoph Böhm; Markus Schmid; Alexander Galushko; Roland Hatzenpichler; Thomas Weinmaier; Rolf Daniel; Christa Schleper; Eva Spieck; Wolfgang R. Streit; Michael Wagner
The cohort of the ammonia-oxidizing archaea (AOA) of the phylum Thaumarchaeota is a diverse, widespread and functionally important group of microorganisms in many ecosystems. However, our understanding of their biology is still very rudimentary in part because all available genome sequences of this phylum are from members of the Nitrosopumilus cluster. Here we report on the complete genome sequence of Candidatus Nitrososphaera gargensis obtained from an enrichment culture, representing a different evolutionary lineage of AOA frequently found in high numbers in many terrestrial environments. With its 2.83 Mb the genome is much larger than that of other AOA. The presence of a high number of (active) IS elements/transposases, genomic islands, gene duplications and a complete CRISPR/Cas defence system testifies to its dynamic evolution consistent with low degree of synteny with other thaumarchaeal genomes. As expected, the repertoire of conserved enzymes proposed to be required for archaeal ammonia oxidation is encoded by N. gargensis, but it can also use urea and possibly cyanate as alternative ammonia sources. Furthermore, its carbon metabolism is more flexible at the central pyruvate switch point, encompasses the ability to take up small organic compounds and might even include an oxidative pentose phosphate pathway. Furthermore, we show that thaumarchaeota produce cofactor F420 as well as polyhydroxyalkanoates. Lateral gene transfer from bacteria and euryarchaeota has contributed to the metabolic versatility of N. gargensis. This organisms is well adapted to its niche in a heavy metal-containing thermal spring by encoding a multitude of heavy metal resistance genes, chaperones and mannosylglycerate as compatible solute and has the genetic ability to respond to environmental changes by signal transduction via a large number of two-component systems, by chemotaxis and flagella-mediated motility and possibly even by gas vacuole formation. These findings extend our understanding of thaumarchaeal evolution and physiology and offer many testable hypotheses for future experimental research on these nitrifiers.
Applied and Environmental Microbiology | 2009
Christel Schmeisser; Heiko Liesegang; Dagmar Krysciak; Nadia Bakkou; Antoine Le Quéré; Antje Wollherr; Isabelle Heinemeyer; Burkhard Morgenstern; Andreas Pommerening-Röser; Margarita Flores; Rafael Palacios; Sydney Brenner; Gerhard Gottschalk; Ruth A. Schmitz; William J. Broughton; Xavier Perret; Axel Strittmatter; Wolfgang R. Streit
ABSTRACT Rhizobium sp. strain NGR234 is a unique alphaproteobacterium (order Rhizobiales) that forms nitrogen-fixing nodules with more legumes than any other microsymbiont. We report here that the 3.93-Mbp chromosome (cNGR234) encodes most functions required for cellular growth. Few essential functions are encoded on the 2.43-Mbp megaplasmid (pNGR234b), and none are present on the second 0.54-Mbp symbiotic plasmid (pNGR234a). Among many striking features, the 6.9-Mbp genome encodes more different secretion systems than any other known rhizobia and probably most known bacteria. Altogether, 132 genes and proteins are linked to secretory processes. Secretion systems identified include general and export pathways, a twin arginine translocase secretion system, six type I transporter genes, one functional and one putative type III system, three type IV attachment systems, and two putative type IV conjugation pili. Type V and VI transporters were not identified, however. NGR234 also carries genes and regulatory networks linked to the metabolism of a wide range of aromatic and nonaromatic compounds. In this way, NGR234 can quickly adapt to changing environmental stimuli in soils, rhizospheres, and plants. Finally, NGR234 carries at least six loci linked to the quenching of quorum-sensing signals, as well as one gene (ngrI) that possibly encodes a novel type of autoinducer I molecule.
PLOS ONE | 2012
Jennifer Chow; Filip Kovacic; Yuliya Dall Antonia; Ulrich Krauss; Francesco Fersini; Christel Schmeisser; Benjamin Lauinger; Patrick Bongen; Joerg Pietruszka; Marlen Schmidt; Ina Menyes; Uwe T. Bornscheuer; Marrit Eckstein; Oliver Thum; Andreas Liese; Jochen Mueller-Dieckmann; Karl-Erich Jaeger; Wolfgang R. Streit
Triacylglycerol lipases (EC 3.1.1.3) catalyze both hydrolysis and synthesis reactions with a broad spectrum of substrates rendering them especially suitable for many biotechnological applications. Most lipases used today originate from mesophilic organisms and are susceptible to thermal denaturation whereas only few possess high thermotolerance. Here, we report on the identification and characterization of two novel thermostable bacterial lipases identified by functional metagenomic screenings. Metagenomic libraries were constructed from enrichment cultures maintained at 65 to 75°C and screened resulting in the identification of initially 10 clones with lipolytic activities. Subsequently, two ORFs were identified encoding lipases, LipS and LipT. Comparative sequence analyses suggested that both enzymes are members of novel lipase families. LipS is a 30.2 kDa protein and revealed a half-life of 48 h at 70°C. The lipT gene encoded for a multimeric enzyme with a half-life of 3 h at 70°C. LipS had an optimum temperature at 70°C and LipT at 75°C. Both enzymes catalyzed hydrolysis of long-chain (C12 and C14) fatty acid esters and additionally hydrolyzed a number of industry-relevant substrates. LipS was highly specific for (R)-ibuprofen-phenyl ester with an enantiomeric excess (ee) of 99%. Furthermore, LipS was able to synthesize 1-propyl laurate and 1-tetradecyl myristate at 70°C with rates similar to those of the lipase CalB from Candida antarctica. LipS represents the first example of a thermostable metagenome-derived lipase with significant synthesis activities. Its X-ray structure was solved with a resolution of 1.99 Å revealing an unusually compact lid structure.
Applied and Environmental Microbiology | 2013
Ines Krohn-Molt; Bernd Wemheuer; Malik Alawi; Anja Poehlein; Simon Güllert; Christel Schmeisser; Andreas Pommerening-Röser; Adam Grundhoff; Rolf Daniel; Dieter Hanelt; Wolfgang R. Streit
ABSTRACT Photobioreactors (PBRs) are very attractive for sunlight-driven production of biofuels and capturing of anthropogenic CO2. One major problem associated with PBRs however, is that the bacteria usually associated with microalgae in nonaxenic cultures can lead to biofouling and thereby affect algal productivity. Here, we report on a phylogenetic, metagenome, and functional analysis of a mixed-species bacterial biofilm associated with the microalgae Chlorella vulgaris and Scenedesmus obliquus in a PBR. The biofilm diversity and population dynamics were examined through 16S rRNA phylogeny. Overall, the diversity was rather limited, with approximately 30 bacterial species associated with the algae. The majority of the observed microorganisms were affiliated with Alphaproteobacteria, Betaproteobacteria, and Bacteroidetes. A combined approach of sequencing via GS FLX Titanium from Roche and HiSeq 2000 from Illumina resulted in the overall production of 350 Mbp of sequenced DNA, 165 Mbp of which was assembled in larger contigs with a maximum size of 0.2 Mbp. A KEGG pathway analysis suggested high metabolic diversity with respect to the use of polymers and aromatic and nonaromatic compounds. Genes associated with the biosynthesis of essential B vitamins were highly redundant and functional. Moreover, a relatively high number of predicted and functional lipase and esterase genes indicated that the alga-associated bacteria are possibly a major sink for lipids and fatty acids produced by the microalgae. This is the first metagenome study of microalga- and PBR-associated biofilm bacteria, and it gives new clues for improved biofuel production in PBRs.
Applied and Environmental Microbiology | 2011
Dagmar Krysciak; Christel Schmeisser; S. Preuß; J. Riethausen; M. Quitschau; Stephanie Grond; Wolfgang R. Streit
ABSTRACT Rhizobium sp. strain NGR234 is a unique alphaproteobacterium (order Rhizobiales) that forms nitrogen-fixing nodules with more legumes than any other microsymbiont. Since we have previously described the complete genome sequence of NGR234, we now report on a genome-wide functional analysis of the genes and enzymes involved in autoinducer I hydrolysis in this microbe. Altogether we identified five cosmid clones that repeatedly gave a positive result in our function-based approach for the detection of autoinducer I hydrolase genes. Of these five cosmid clones, two were located on pNGR234b and three were on cNGR234. Subcloning and in vitro mutagenesis in combination with BLAST analyses identified the corresponding open reading frames (ORFs) of all cosmid clones: dlhR, qsdR1, qsdR2, aldR, and hitR-hydR. Analyses of recombinant DlhR and QsdR1 proteins by using high-performance liquid chromatography-mass spectrometry (HPLC-MS) demonstrate that these enzymes function as acyl homoserine lactone (AHL) lactonases. Furthermore, we showed that these enzymes inhibited biofilm formation and other quorum-sensing-dependent processes in Pseudomonas aeruginosa, Chromobacterium violaceum, and Agrobacterium tumefaciens. Finally, our experimental data suggest that competitive colonization of roots in the rhizospheres of cowpea plants is affected by DlhR and QsdR1.
PLOS ONE | 2013
Claudia Hornung; Anja Poehlein; Frederike S. Haack; Martina Schmidt; Katja Dierking; Andrea Pohlen; Hinrich Schulenburg; Melanie Blokesch; Laure Plener; Kirsten Jung; Andreas Bonge; Ines Krohn-Molt; Christian Utpatel; Gabriele Timmermann; Eva Spieck; Andreas Pommerening-Röser; Edna Bode; Helge B. Bode; Rolf Daniel; Christel Schmeisser; Wolfgang R. Streit
Janthinobacteria commonly form biofilms on eukaryotic hosts and are known to synthesize antibacterial and antifungal compounds. Janthinobacterium sp. HH01 was recently isolated from an aquatic environment and its genome sequence was established. The genome consists of a single chromosome and reveals a size of 7.10 Mb, being the largest janthinobacterial genome so far known. Approximately 80% of the 5,980 coding sequences (CDSs) present in the HH01 genome could be assigned putative functions. The genome encodes a wealth of secretory functions and several large clusters for polyketide biosynthesis. HH01 also encodes a remarkable number of proteins involved in resistance to drugs or heavy metals. Interestingly, the genome of HH01 apparently lacks the N-acylhomoserine lactone (AHL)-dependent signaling system and the AI-2-dependent quorum sensing regulatory circuit. Instead it encodes a homologue of the Legionella- and Vibrio-like autoinducer (lqsA/cqsA) synthase gene which we designated jqsA. The jqsA gene is linked to a cognate sensor kinase (jqsS) which is flanked by the response regulator jqsR. Here we show that a jqsA deletion has strong impact on the violacein biosynthesis in Janthinobacterium sp. HH01 and that a jqsA deletion mutant can be functionally complemented with the V. cholerae cqsA and the L. pneumophila lqsA genes.
Journal of Biological Chemistry | 2006
Antoine Le Quéré; William J. Deakin; Christel Schmeisser; Russell W. Carlson; Wolfgang R. Streit; William J. Broughton; L. Scott Forsberg
Many early molecular events in symbiotic infection have been documented, although factors enabling Rhizobium to progress within the plant-derived infection thread and ultimately survive within the intracellular symbiosome compartment as mature nitrogen-fixing bacteroids are poorly understood. Rhizobial surface polysaccharides (SPS), including the capsular polysaccharides (K-antigens), exist in close proximity to plant-derived membranes throughout the infection process. SPSs are essential for bacterial survival, adaptation, and as potential determinants of nodulation and/or host specificity. Relatively few studies have examined the role of K-antigens in these events. However, we constructed a mutant that lacks genes essential for the production of the K-antigen strain-specific sugar precursor, pseudaminic acid, in the broad host range Rhizobium sp. NGR234. The complete structure of the K-antigen of strain NGR234 was established, and it consists of disaccharide repeating units of glucuronic and pseudaminic acid having the structure →4)-β-d-glucuronic acid-(1→4)-β-5,7-diacetamido-3,5,7,9-tetradeoxy-l-glycero-l-manno-nonulosonic acid-(2→. Deletion of three genes located in the rkp-3 gene cluster, rkpM, rkpN, and part of rkpO, abolished pseudaminic acid synthesis, yielding a mutant in which the strain-specific K-antigen was totally absent: other surface glycoconjugates, including the lipopolysaccharides, exopolysaccharides, and flagellin glycoprotein appeared unaffected. The NGRΔrkpMNO mutant was symbiotically defective, showing reduced nodulation efficiency on several legumes. K-antigen production was found to decline after rhizobia were exposed to plant flavonoids, and the decrease coincided with induction of a symbiotically active (bacteroid-specific) rhamnan-LPS, suggesting an exchange of SPS occurs during bacterial differentiation in the developing nodule.
Journal of Bacteriology | 2012
Jörg Schuldes; Mariita Rodriguez Orbegoso; Christel Schmeisser; Hari B. Krishnan; Rolf Daniel; Wolfgang R. Streit
Here we announce the complete genome sequence of the symbiotic and nitrogen-fixing bacterium Sinorhizobium fredii USDA257. The genome shares a high degree of sequence similarity with the closely related broad-host-range strains S. fredii NGR234 and HH103. Most strikingly, the USDA257 genome encodes a wealth of secretory systems.