Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wolfgang Schwab is active.

Publication


Featured researches published by Wolfgang Schwab.


Critical Reviews in Food Science and Nutrition | 2005

Nutraceutical Therapies for Degenerative Joint Diseases: A Critical Review

Robert Goggs; Anne Vaughan-Thomas; Peter D. Clegg; S. D. Carter; J. F. Innes; Ali Mobasheri; Mehdi Shakibaei; Wolfgang Schwab; Carolyn A. Bondy

There is growing recognition of the importance of nutritional factors in the maintenance of bone and joint health, and that nutritional imbalance combined with endocrine abnormalities may be involved in the pathogenesis of osteoarthritis (OA) and osteochondritis dissecans (OCD). Despite this, dietary programs have played a secondary role in the management of these connective tissue disorders. Articular cartilage is critically dependent upon the regular provision of nutrients (glucose and amino acids), vitamins (particularly vitamin C), and essential trace elements (zinc, magnesium, and copper). Therefore, dietary supplementation programs and nutraceuticals used in conjunction with non-steroidal, anti-inflammatory drugs (NSAIDs) may offer significant benefits to patients with joint disorders, such as OA and OCD. This article examines the available clinical evidence for the efficacy of nutraceuticals, antioxidant vitamin C, polyphenols, essential fatty acids, and mineral cofactors in the treatment of OA and related joint disorders in humans and veterinary species. This article also attempts to clarify the current state of knowledge. It also highlights the need for additional targeted research to elucidate the changes in nutritional status and potential alterations to the expression of plasma membrane transport systems in synovial structures in pathophysiological states, so that current therapy and future treatments may be better focused.


Histochemistry and Cell Biology | 2001

Expression of the urokinase-type plasminogen activator receptor in human articular chondrocytes: association with caveolin and β1-integrin

Wolfgang Schwab; J.M. Gavlik; T. Beichler; Richard Funk; Sybille Albrecht; Viktor Magdolen; Thomas Luther; Michael Kasper; M. Shakibaei

Abstract. The urokinase-type plasminogen activator (uPA) in concert with other proteolytic enzymes plays a critical role in cartilage degradation during osteoarthritis. Urokinase receptor (uPAR), a glycosyl-phosphatidylinositol-linked glycoprotein present on the cell surface of various cell types such as cancer cells, fibroblasts, synoviocytes, and chondrocytes, is a key regulator of the plasmin-mediated pericellular proteolysis. Recently, in arthritic synovial tissue increased uPAR expression has been detected. By immunohistochemical analysis we observed, in addition, enhanced expression of uPAR in chondrocytes of arthritic samples of human cartilage compared to non-arthritic controls. Using in vitro cultured human chondrocytes, we analyzed whether uPAR is associated with structural proteins, which are known to be involved in cell signaling and activation. uPAR in phorbol-12-myristate-13-acetate-stimulated chondrocytes colocalized with caveolin as well as β1-integrin, as demonstrated by double immunostaining with specific antibodies. Furthermore, uPAR was present in caveolae-like structures of chondrocytes as detected by immunoelectron microscopy. Finally, both caveolin and β1-integrin were coprecipitated with uPAR-specific antibodies from cell extracts suggesting that these proteins may form functional complexes in human chondrocytes. The localization of uPAR in caveolae and its close association with caveolin and β1-integrin points to a significance of uPAR-mediated signaling pathways in human chondrocytes.


Histochemistry and Cell Biology | 1999

Characterisation of caveolins from cartilage: expression of caveolin-1, -2 and -3 in chondrocytes and in alginate cell culture of the rat tibia

Wolfgang Schwab; Ferrucio Galbiati; Daniela Volonté; Ute Hempel; Klaus-W. Wenzel; Richard Funk; Michael P. Lisanti; Michael Kasper

Abstract This study was performed to determine if rat articular chondrocytes express caveolin, the structural protein of caveolae, and to determine differences in the distribution of the caveolin subtypes 1, 2 and 3 in knee joints of newborn and adult rats. All three subtypes of caveolin were detected in adult cartilage by immunocytochemical staining. In newborn rats, only caveolin-1 was found in the hyaline cartilage. Caveolin-1, -2 and -3 messenger RNA and protein were also detected in chondrocyte cell cultures. Ultrastructural investigations of cell culture and cartilage tissue revealed the presence of caveolae at the plasma membrane of chondrocytes. These findings represent the first report on the different expression of caveolin isoforms, in particular the expression of the muscle cell-specific caveolin-3 in chondrocytes. There is evidence that caveolin-2 and -3 are upregulated during growth and development of articular cartilage, suggesting a role for caveolins in chondrocyte differentiation.


Histochemical Journal | 1998

IMMUNOHISTOCHEMICAL DISTRIBUTION OF CONNEXIN 43 IN THE CARTILAGE OF RATS AND MICE

Wolfgang Schwab; Andreas Hofer; Michael Kasper

Using fluorescence immunohistochemistry, the distribution of connexin 43 was examined in hyaline cartilage and in the perichondrium of mouse and rat knee joints. In addition, rat chondrocytes were shown to be coupled in dye transfer studies with Lucifer Yellow. Connexin 43 was detected between chondrocytes in the outer layer of knee joint cartilage, between chondrocytes of the growth plate and between fibrocartilage-like cells at tendon and ligament insertions and in the tendons and ligaments proper. However, in the hyaline cartilage of the hind limbs of mature rats, the degree of connexin 43 immunoreactivity was diminished. These data suggest a possible involvement of connexins in cartilage development.


Histochemistry and Cell Biology | 2000

Characterization of caveolins from human knee joint cartilage: expression of caveolin-1, -2, and -3 in chondrocytes and association with integrin β1

Wolfgang Schwab; Michael Kasper; J.M. Gavlik; Eva Schulze; Richard Funk; M. Shakibaei

Abstract Interactions between the extracellular matrix (ECM) and chondrocytes are of great importance for structure and function of cartilage. The present study was undertaken to answer the question whether caveolins take part in integrin-mediated cell–ECM interactions in the human cartilage. In samples of human knee joint cartilage, we detected the caveolin subtypes -1, -2, and -3 by immunohistochemical methods. Double-label experiments revealed a colocalization of caveolin with β1-integrin. Results of immunoprecipitation and immunoblotting assays show that β1-integrins associate with all three caveolin subtypes in human chondrocytes and indicate that they are part of the same complexes. Furthermore, immunoelectron microscopy shows the localization of β1-integrin in caveolae-like structures of the cell membrane. The data stimulate further investigations on the role of the caveolin–integrin complex for integrin-mediated signaling pathways in chondrocytes.


Histochemistry and Cell Biology | 2007

Immunocytochemical and biochemical detection of EMMPRIN in the rat tooth germ: differentiation-dependent co-expression with MMPs and co-localization with caveolin-1 in membrane rafts of dental epithelial cells.

Wolfgang Schwab; Hidemitsu Harada; W. Goetz; M. Nowicki; Martin Witt; Michael Kasper; Kathrin Barth

In tooth development matrix metalloproteinases (MMPs) are under the control of several regulatory mechanisms including the upregulation of expression by inducers and downregulation by inhibitors. The aim of the present study was to monitor the occurrence and distribution pattern of the extracellular matrix metalloproteinase inducer (EMMPRIN), the metalloproteinases MMP-2 and MT1-MMP and caveolin-1 during the cap and bell stage of rat molar tooth germs by means of immunocytochemistry. Strong EMMPRIN immunoreactivity was detected on the cell membranes of ameloblasts and cells of the stratum intermedium in the bell stage of the enamel organ. Differentiating odontoblasts exhibited intense EMMPRIN immunoreactivity, especially at their distal ends. Caveolin-1 immunoreactivity was evident in cells of the internal enamel epithelium and in ameloblasts. Double immunofluorescence studies revealed a focal co-localization between caveolin-1 and EMMPRIN in ameloblastic cells. Finally, western blotting experiments demonstrated the expression of EMMPRIN and caveolin-1 in dental epithelial cells (HAT-7 cells). A substantial part of EMMPRIN was detected in the detergent-insoluble caveolin-1-containing low-density raft membrane fraction of HAT-7 cells suggesting a partial localization within lipid rafts. The differentiation-dependent co-expression of MMPs with EMMPRIN in the enamel organ and in odontoblasts indicates that EMMPRIN takes part in the induction of proteolytic enzymes in the rat tooth germ. The localization of EMMPRIN in membrane rafts provides a basis for further investigations on the role of caveolin-1 in EMMPRIN-mediated signal transduction cascades in ameloblasts.


Histochemical Journal | 1999

Ultrastructural Identification of Caveolae and Immunocytochemical as Well as Biochemical Detection of Caveolin in Chondrocytes

Wolfgang Schwab; Ute Hempel; Richard Funk; Michael Kasper

Using fluorescence immunocytochemistry, transmission electron microscopy and Western blotting, we have shown that caveolae and caveolin are abundant on chondrocytes of different cartilaginous structures of newborn and adult rat knee joints. Caveolin was detected in chondrocytes of the outer layer of articular cartilage, in the fibrocartilage of the menisci, and in fibrocartilage-like cells at tendon and ligament insertions. Electron microscopical studies revealed caveolae-like invaginations along the plasmalemmal membrane of articular chondrocytes and fibrocartilage cells. Immunoblot analysis demonstrated caveolin in detergent-insoluble and soluble complexes isolated from cultured rat chondrocytes.


Acta Histochemica | 1999

Immunohistochemical localization of the differentiation marker E11 in dental development of rats

Wolfgang Schwab; Eva Schulze; Martin Witt; Richard Funk; Michael Kasper

E11 antigen, originally characterized in a rat osteosarcoma cell line, is known to be expressed during late stages of the osteogenic cell lineage both in vitro and in vivo. The aim of the present study was to monitor the occurrence and distribution patterns of the E11 antigen using monoclonal antibodies (mAb E11 and MEP-1) during different stages of tooth germ development of new-born rats by means of immunohistochemistry. Both antibodies strongly bound to plasma membranes of ameloblasts in presecretory and secretory stages. In addition, odontoblasts and cells of the periodontium were immunoreactive for E11 and MEP-1. During maturation, the immunoreactivity of ameloblast plasma membranes decreased significantly. Our data suggest that E11 and MEP-1 might be important as markers for cell differentiation and mineralization processes during tooth germ development.


Histochemistry and Cell Biology | 2013

Immunocytochemical and biochemical detection of the urokinase-type plasminogen activator receptor (uPAR) in the rat tooth germ and in lipid rafts of PMA-stimulated dental epithelial cells

A. von Germar; Kathrin Barth; Wolfgang Schwab

Urokinase-type plasminogen activator receptor (uPAR) regulates pericellular proteolysis by binding the serine proteinase urokinase-type plasminogen activator (uPA) that promotes cell surface activating of plasminogen to plasmin. In addition, uPAR as a glycosylphosphatidylinositol (GPI)-anchored signaling receptor affects cell migration, differentiation, and proliferation. The aim of the present study was to monitor the occurrence and distribution pattern of uPAR in cells of the rat molar tooth germ. By means of immunocytochemistry moderate, uPAR immunoreactivity was detected in epithelial cells of the enamel organ and in ameloblasts and odontoblasts. RT-PCR and Western blotting experiments demonstrated the expression of uPAR in phorbol 12-myristate 13-acetate (PMA)-stimulated dental epithelial cells (HAT-7 cells). A substantial part of uPAR was detected in the detergent-insoluble caveolin-1-containing low-density raft membrane fraction of HAT-7 cells suggesting a partial localization within lipid rafts. However, co-immunoprecipitation experiments showed that uPAR and caveolin-1 do not associate with each other directly. Cell stimulation experiments with PMA indicated that protein kinase C (PKC)-mediated signaling pathways contribute to the expression of uPAR in cells of the enamel organ. The localization of uPAR in membrane rafts provides a basis for further investigations on the role of uPAR-mediated signaling cascades in ameloblasts.


Histochemistry and Cell Biology | 2002

Immunohistochemical demonstration of Nɛ-(carboxymethyl)lysine protein adducts in normal and osteoarthritic cartilage

Wolfgang Schwab; Ulrich Friess; Ute Hempel; Eva Schulze; Zenji Makita; Michael Kasper; Hans-Georg Simank

Collaboration


Dive into the Wolfgang Schwab's collaboration.

Top Co-Authors

Avatar

Richard Funk

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar

Christian Albrecht May

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar

Michael Kasper

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar

Eva Schulze

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar

Ute Hempel

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar

J.M. Gavlik

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar

Kathrin Barth

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar

M. Shakibaei

Free University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge